From Statistical Relational to Neurosymbolic Al

Giuseppe Marra

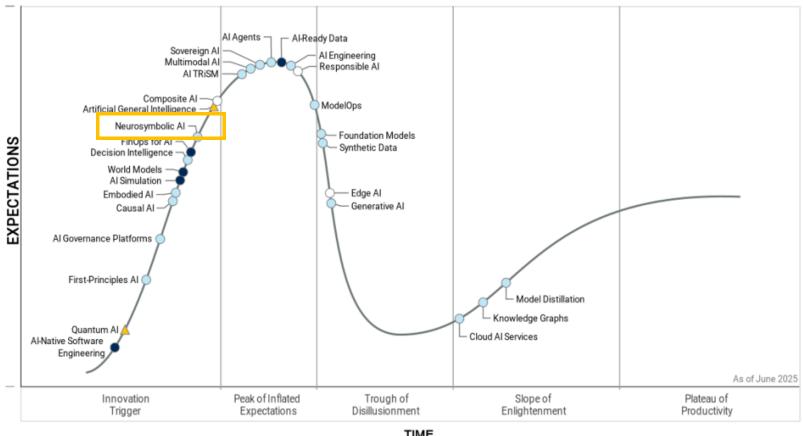
Joint work

- Luc De Raedt, Robin Manhaeve, Thomas Winters, Vincent Derkinderen,
 Wen-Chi Yang, Lennert De Smet, Gabriele Venturato, David Debot
- Pietro Barbiero, Michelangelo Diligenti, Francesco Giannini, Marco Maggini,
 Marco Gori, Eleonora Misino, Emanuele Santone,

The neurosymbolic integration quest

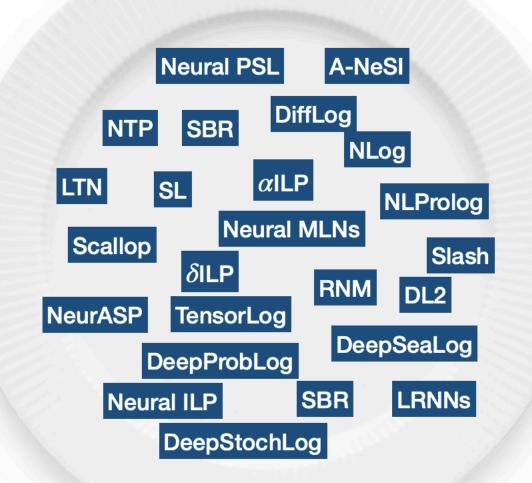
Subsymbolic Symbolic Approaches Approaches data knowledge learning reasoning

Hype Cycle for Artificial Intelligence, 2025



TIME

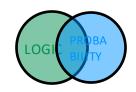
The neurosymbolic alphabet soup



From Statistical Relational....

Another paradigm for learning and reasoning

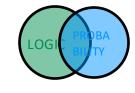
StarAl = Logic + PGMs

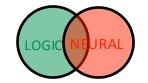


From Statistical Relational to Neurosymbolic Al

Another paradigm for learning and reasoning

StarAl = Logic + PGMs





NeSy = Logic + Neural Networks

From Statistical Relational to Neurosymbolic Al

7 dimensions:

- Proof vs Models
- Syntax
- Semantics
- Structure vs Parameter Learning
- Representations (symbolic vs subsymbolic)
- Recovery of original paradigms
- Tasks

From statistical relational to neurosymbolic artificial intelligence: A survey

Giuseppe Marra a,*, Sebastijan Dumančić c, Robin Manhaeve a, Luc De Raedt a,b

- a KU Leuven, Department of Computer Science and Leuven.AI, Belgium
- b Örebro University, Center for Applied Autonomous Sensor Systems, Sweden
- c Delft University of Technology, Department of Software Technology, Netherlands

Frameworks	Inference	Syntax	Semantics	Learning	Representations	Paradigms	Tasks
	(P)roof (M)odel	(P)ropositional (R)elational (FOL)	(M)inimal (S)table (C)lassical (F)uzzy (P)robability	(P)arameters (S)tructure	(S)ymbolic (Sub)symbolic	Logic (L/l) Probability (P/p) Neural(N/n)	(D)istant (S)upervision (S)emi (S)upervised (KGC)ompletion (G)enerative (K)nowledge (I)nduction
αILP [111]	P+M	FOL	S + P	P + S	S	Ln	KI
∂ILP [39]	P	R	M + F	P + S	S	Ln	DS + KI
DeepProbLog [72]	P+M	FOL	M + P	P+S	S+Sub	LpN	DS + KI
DeepStochLog [132]	P	FOL	M + P	P	S	LpN	DS + SS
DiffLog [112]	P	R	M + F	P+S	S	Ln	KI
DL2 [40]	M	P	C + F	P	S+Sub	lN	DS + SS
DLM [77]	M	FOL	C + F + P	P	S	1PN	SS + KGC
LRNN [116]	P	R	M + F	P + S	S + Sub	LN	KGC + KI
LTN [5]	M	FOL	C + F	P	S + Sub	1N	DS + SS
NeuralLP [137]	P	R	M + F	P	S	Ln	KGC + KI
NeurASP [138]	P+M	FOL	S + P	P	S	LpN	DS
NLM [35]	P	R	M + F	P + S	S	Ln	KGC + KI
NLog [121]	P	R	M + P	P	S	LpN	DS
NLProlog [131]	P	R	M + P	P + S	S + Sub	LpN	KGC + KI
NMLN [78]	M	FOL	C + P	P + S	S + Sub	lPN	KGC + G
NTP [102]	P	R	M + F	P + S	S + Sub	Ln	KGC + KI
RNM [76]	M	FOL	C + P	P	S	1PN	SS
SBR [33]	M	FOL	C + F	P	S+Sub	lN	DS + SS
Scallop [58]	P	FOL	M + P	P	S	LpN	DS
SL [133]	M	P	C + P	P	S	LpN	SS
Slash [113]	P+M	FOI.	S + P	D	S	LnN	DS +SS

From Statistical Relational to Neurosymbolic Al

7 dimensions:

- Proof vs Models
- Syntax
- Semantics
- Structure vs Parameter Learning
- Representations (symbolic vs subsymbolic)
- Recovery of original paradigms
- Tasks

Lion AND Gate -> Zoo. Lion AND Wall -> Zoo.

How do we interpret these logic formulas?

Logic

```
Lion AND Gate -> Zoo.
Lion AND Wall -> Zoo.
```

Logic rules as computational rules (logic programs)

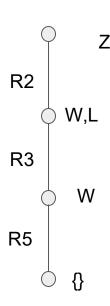
Logic rules as constraints (SAT)

proof-based

R1: Lion AND Gate -> Zoo.
R2: Lion AND Wall -> Zoo.

R3: Lion. R4: Gate. R5: Wall.

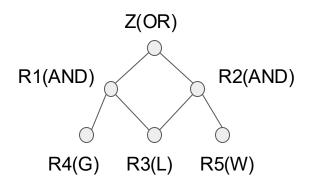
Logic rules as computational rules (logic programs)



R1: Lion AND Gate -> Zoo.
R2: Lion AND Wall -> Zoo.

R3: Lion. R4: Gate. R5: Wall.

Logic rules as computational rules (logic programs)



Logic

Lion AND Gate -> Zoo. Lion AND Wall -> Zoo.

Logic rules as computational rules (logic programs)

Logic rules as constraints (SAT)

proof-based

Lion AND Gate -> Zoo.

Logic rules as constraints (SAT)

Lion AND Gate -> Zoo.

Logic rules as constraints (SAT)

L	G	Z	M
F	F	F	Т
F	F	Т	Т
F	Т	F	Т
F	Т	Т	Т
Т	F	F	Т
Т	F	Т	Т
Т	Т	F	F
Т	Т	Т	Т

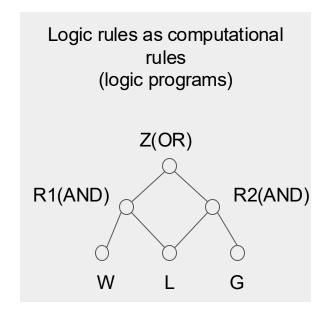
Lion AND Gate -> Zoo.

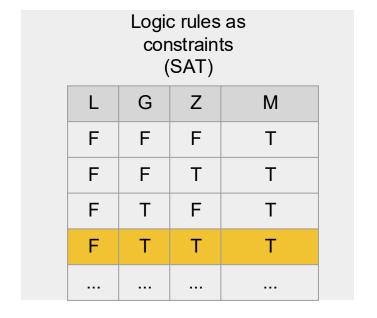
Logic rules as constraints (SAT)

L	G	Z	М
F	F	F	Т
F	F	Т	Т
F	Т	F	Т
F	Т	Т	Т
Т	F	F	Т
Т	F	Т	Т
Т	Т	F	F
Т	Т	Т	Т

Logic

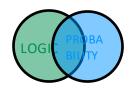
Lion AND Gate -> Zoo. Lion AND Wall -> Zoo.





proof-based

Can we use the same perspective when we deal with uncertainty?

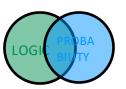


StarAl = Logic + Probabilities

```
0.7:: Lion AND Gate -> Zoo.
0.3:: Lion AND Wall -> Zoo.
```

Stochastic Logic Programs

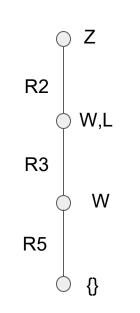
Markov Logic



The use of logic: Proof vs Model StarAl = Logic + Probabilities

```
0.7:: Lion AND Gate -> Zoo.
0.3:: Lion AND Wall -> Zoo.
1: Lion. 1: Gate. 1: Wall.
```

Stochastic Logic Programs



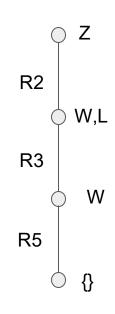
$$P(proof1) = p(R2) * p(R3) * p (R5)$$

Proof1

The use of logic: Proof vs Model StarAl = Logic + Probabilities

0.7:: Lion AND Gate -> Zoo.
0.3:: Lion AND Wall -> Zoo.
1: Lion. 1: Gate. 1: Wall.

Stochastic Logic Programs



P(proof1) = p(R2) * p(R3) * p (R5)

Semantics:

Probability distribution over proofs

(akin to probabilistic grammars)

proof-based

Proof1

StarAl = Logic + Probabilities

```
0.7:: Lion AND Gate -> Zoo.
0.3:: Lion AND Wall -> Zoo.
```

Stochastic Logic Programs

Markov Logic

proof-based model-based

StarAl = Logic + Probabilities

w1:: Lion AND Gate -> Zoo. w2:: Lion AND Wall -> Zoo.

Markov Logic

L	W	G	Z	W
F	F	F	F	w1 + w2
F	F	F	Т	
F	F	Т	F	
F	F	Т	Т	
Т	Т	Т	F	0 + 0

StarAl = Logic + Probabilities

w1:: Lion AND Gate -> Zoo. w2:: Lion AND Wall -> Zoo.

Markov Logic

L	W	G	Z	W
F	F	F	F	w1 + w2
F	F	F	Т	
F	F	Т	F	
F	F	Т	Т	
Т	Т	Т	F	0 + 0

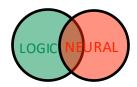
Weight of a model =
sum of the weights
of the formulas it
makes True

$$p(m) = \frac{e^W}{Z}$$

NeSy = Logic + Neural

```
Lion AND Gate -> Zoo.
Lion AND Wall -> Zoo.
```

Can we use the same perspective also in NeSy?



NeSy = Logic + Neural

```
Lion AND Gate -> Zoo.
Lion AND Wall -> Zoo.
```

Neural Program

Semantic-Based Regularizers

proof-based model-based

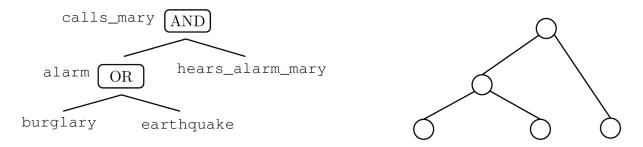
- KBANN (Towell and Shavlik AlJ 94)
- Turn a (propositional) Prolog program into a neural network and learn

- KBANN (Towell and Shavlik AIJ 94)
- Turn a (propositional) Prolog program into a neural network and learn

Turn the program into an AND/OR tree (backward chaining)

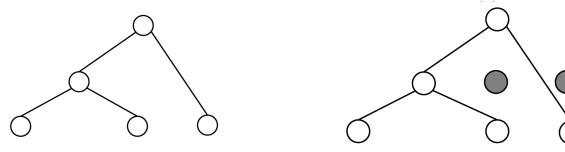
- KBANN (Towell and Shavlik AIJ 94)
- Turn a (propositional) Prolog program into a neural network and learn

Turn AND/OR tree into a neural net (one neuron per node)



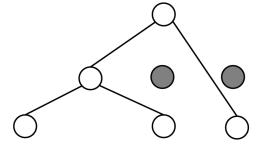
- KBANN (Towell and Shavlik AIJ 94)
- Turn a (propositional) Prolog program into a neural network and learn

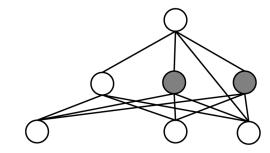
Add Hidden Nodes in a layered structure



- KBANN (Towell and Shavlik AIJ 94)
- Turn a (propositional) Prolog program into a neural network and learn

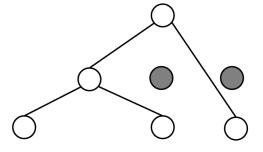
Make the layers fully-connected

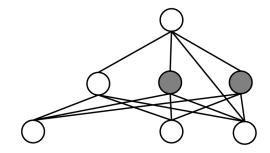




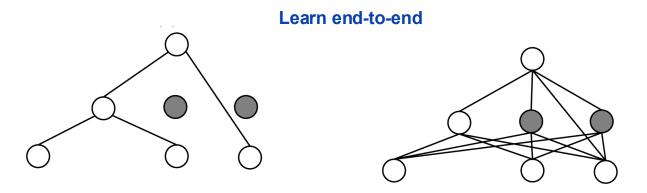
- KBANN (Towell and Shavlik AIJ 94)
- Turn a (propositional) Prolog program into a neural network and learn

Initialise weights "coherent to logic"

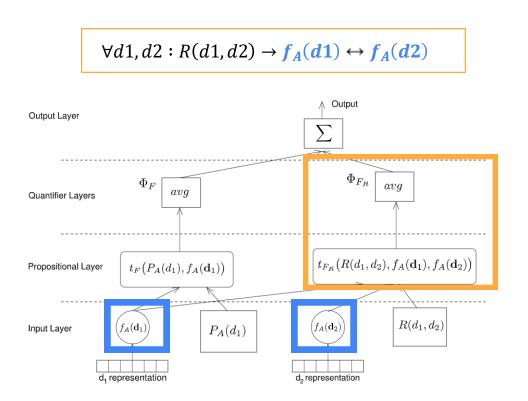




- KBANN (Towell and Shavlik AIJ 94)
- Turn a (propositional) Prolog program into a neural network and learn

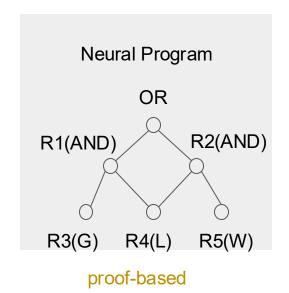


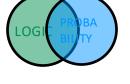
Logic as a regularizer

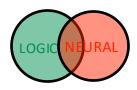


L	W	G	Z	W
F	F	F	F	w1 + w2
F	F	F	Т	
F	F	Т	F	
F	F	Т	Т	
Т	Т	Т	F	0 + 0

The use of logic: Proof







Proof

Probabilistic Grammars

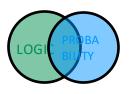
Neural Networks

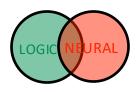
Inference structures = graphical models

Logic is a template for the architecture

Inference = Traversal

The use of logic: Model





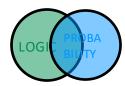
Logic is used to:

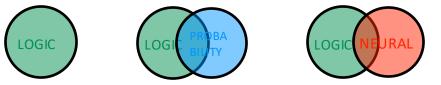
Check Models Weight Models Weight
Networks' Outputs

L	W	G	Z	W	
F	F	F	F	w1 + w2	
F	F	F	Т		
F	F	Т	F		
F	F	Т	Т		
Т	Т	Т	F	0 + 0	

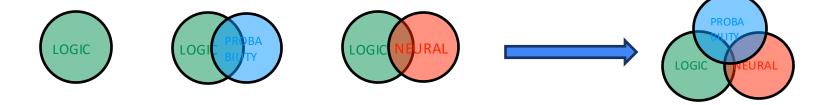
Models = variables of interest = neural network

Logic = constraint = expected behaviour = loss function





StarAl as a recipe for NeSy



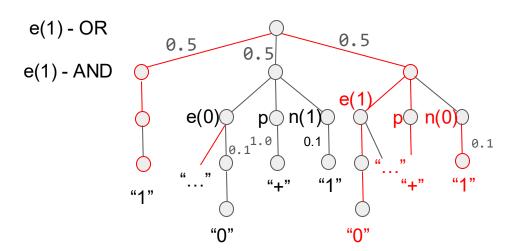
The use of logic: Proof

Stochastic Definite Clause Grammars

Parse Sequences: ["0", "+", "9", "+", "1"].

```
0.5 :: e(N) --> n(N).
0.5 :: e(N) \longrightarrow e(N1), p, n(N2),
                   \{N \text{ is } N1 + N2\}.
1.0 :: p --> ["+"].
0.1 :: n(0) \longrightarrow ["0"].
0.1 :: n(1) \longrightarrow ["1"].
0.1 :: n(9) --> ["9"].
```

The use of logic: Proof Stochastic Definite Clause Grammars



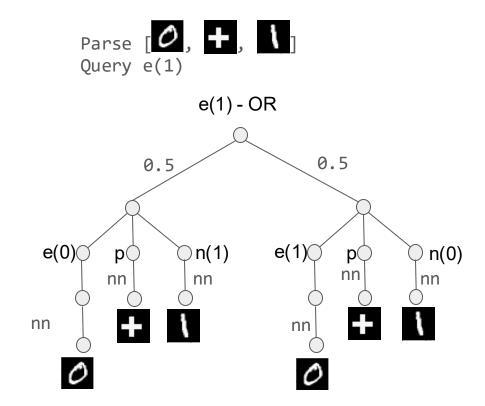
The use of logic: Proof

DeepStochLog

```
0.5 :: e(N) --> n(N).
0.5 :: e(N) \longrightarrow e(N1), p, n(N2),
                   {N is N1 + N2}.
nn(♣,"+"):: p --> [♣].
nn(\mathcal{O},0):: n(0) \longrightarrow [\mathcal{O}].
nn( \ ,1):: n(1) --> [ \ ].
nn(q,9):: n(9) --> [q].
```

neural rule

The use of logic: Proof Stochastic Definite Clause Grammars



The use of logic: Model Markov Logic Networks

$$p(G, L, S, Z, W) = \frac{1}{Z} \exp(\beta_1 \phi_1(G, L, S, Z, W) + \beta_2 \phi_2(G, L, S, Z, W) + \dots)$$

Probability of a model

weighted satisfaction of logical rules

 $(e.g. 2.75:: L, G \rightarrow Z)$

The use of logic: Model

Relational Neural Machines

conditioning on subsymbols

Add neural-unary factors to MLN

$$p(G, L, S, Z, W \mid \square) = \frac{1}{Z} \exp(\beta_1 \phi_1(G, L, S, Z, W) + \beta_2 \phi_2(G, L, S, Z, W) + \dots + NN_G(\square) + NN_L(\square) + \dots)$$

neural unary factors

Marra et al, ECML 2019 Marra et al., ECAI 2020

The use of logic: Model

Relational Neural Machines

conditioning on subsymbols

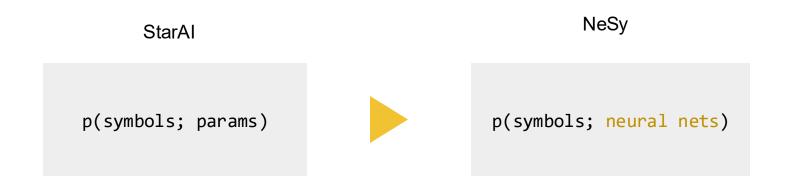
$$p(G, L, S, Z, W \mid \square) = \frac{1}{Z} \exp(\beta \cdot |B|)$$

```
0.5 :: e(N) \longrightarrow n(N).
                            0.5 :: e(N) \longrightarrow e(N1), p, n(N2),
                                                    {N is N1 + N2}.
                            nn( , "+"):: p --> [ ].
                            nn(\mathcal{O},0):: n(0) --> [\mathcal{O}].
                                 ,1):: n(1) --> [  ].
                                            n(9) --> [ q ].
= \frac{1}{Z} \exp(\beta_1 \phi_1(G, L, S, Z, W) + \beta_2 \phi_2(G, L, S, Z, W) + \dots + NN_G(M) - NN_L(M) + \dots)
```

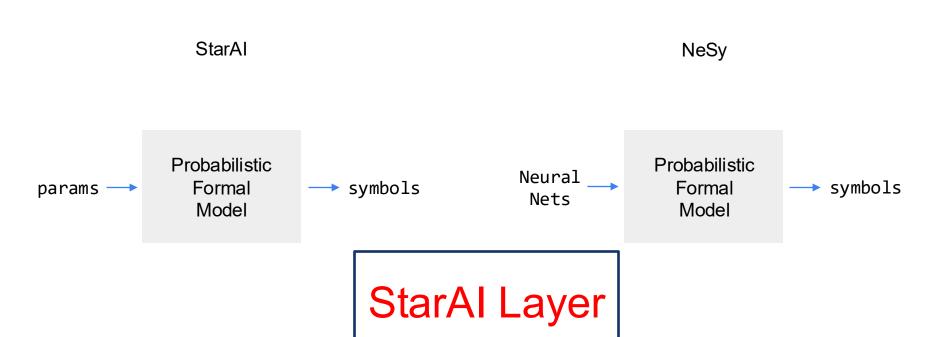
neural unary factors

StarAl as a recipe for NeSy

The StarAl reparameterization viewpoint

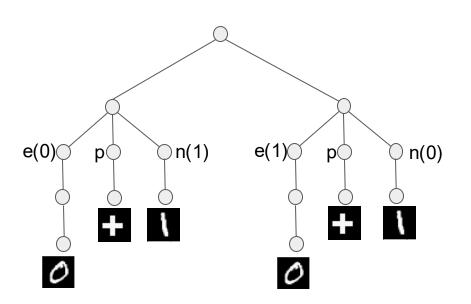


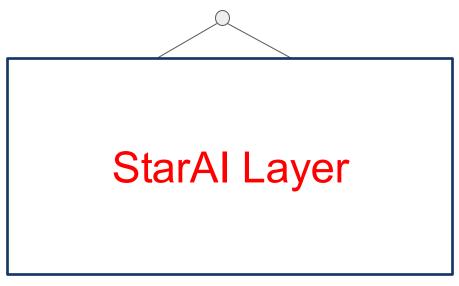
StarAl as a recipe for NeSy StarAl as a layer



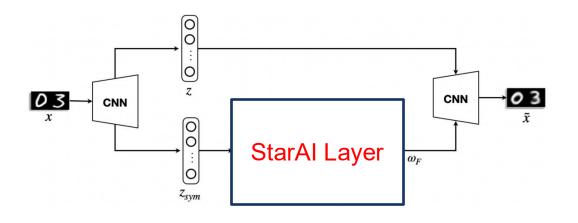
Ahmed et al, 2022

Logic as a layer StarAl as a layer

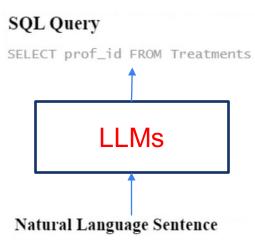




StarAl layers in conditional VAE



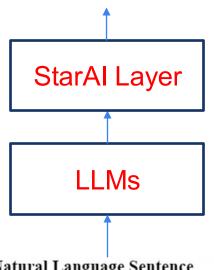
Zero shot generaliation by programming VAEs



Find the ids of professionals who have ever treated dogs.

SQL Query

SELECT prof_id FROM Treatments



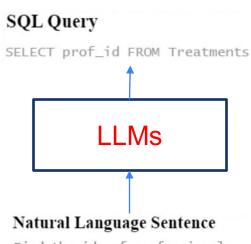
Natural Language Sentence

Find the ids of professionals who have ever treated dogs.

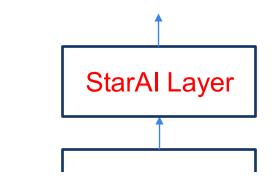
StarAl layers in conditional VAE

SQL Query

SELECT prof_id FROM Treatments

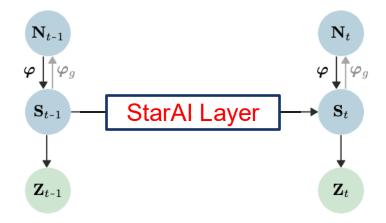


Find the ids of professionals who have ever treated dogs.

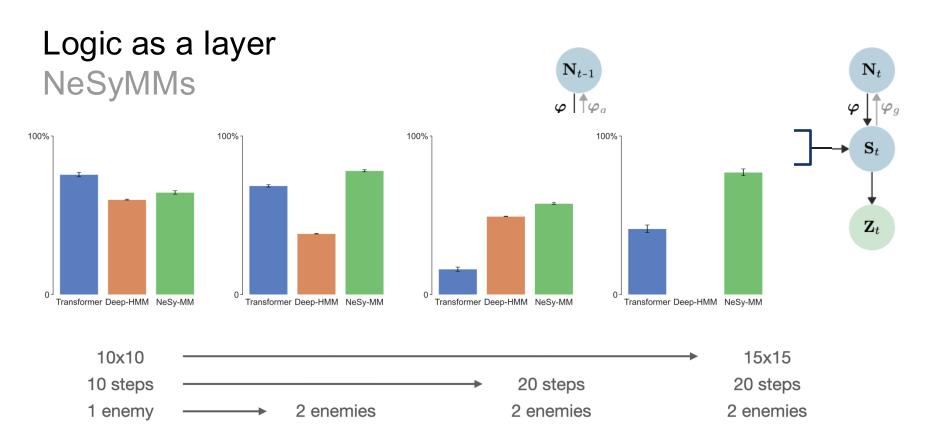


		Validity%	Exact
		vandity 70	Matching %
Smaller Models (Millions Params.)	T5-small	53.9	41.1
	T5-small+CFGs	88.8	67.1
	Ours (T5-small+DCGs)	100.0	75.6
Larger Models (B/Trillions Params.)	DAIL-SQL (GPT-4)	99.2	88.8
	DIN-SQL (GPT-4)	99.2	78.7
(D/ ITIIIIOIIS Farailis.)	Graphix-T5 (T5-3B+PICARD)	99.6	91.9

Logic as a layer NeSyMMs

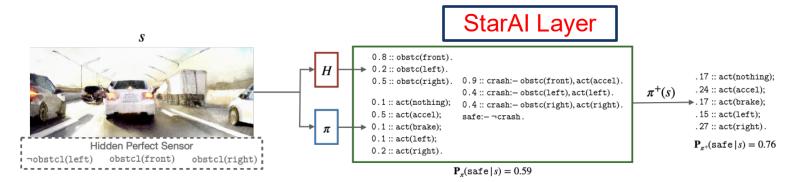


De Smet et al, AAAI 2025



Out of distribution

Logic layers in policy gradient



Probabilistic Logic Shields for Safe Reinforcement Learning

StarAl layer as an interpretable layer

Concept-Based Interpretable Model

> Barbiero et al, ICML 2023 Debot et al, NeurIPS 2024 Dominici et al, ICLR 2025

StarAl as a recipe for NeSy

- StarAl has already studied sound semantics for learning and reasoning
- StarAl can be used as a starting point for NeSy
- StarAl layers can give a neurosymbolic flavour to existing neural approaches

What should NeSy be about?

Enthusiast: Integrating knowledge into neural networks (best of both worlds)

Critic: Knowledge bottleneck: obtaining, formalizing and maintaining symbolic human knowledge is hard.

Three aspects of knowledge in NeSy

Source

Format

Function

The **source** of knowledge: **human**

Enthusiast: NeSy can integrate human knowledge

Critic: You are constraining what the machine can learn by the human

- Integrating human knowledge is (to very different degrees) part of all Al
- Human knowledge can be:
 - Logic rules, Inference Rules -> as in Symbolic AI
 - Supervision / Data preprocessing / Inductive Biases / Loss functions -> as in supervised learning
 - Content -> as in self-supervised
 - Rewards/Environments -> as in reinforcement learning
- Integrating knowledge is everywhere in Al
 - Not a prerogative of NeSy
 - But in other "terms" very well accepted in ML/Al

The **format** of knowledge: **symbolic**

Critic: Formalizing human knowledge in symbolic way is hard and error-prone

Enthusiast: Yet, you can provide guarantees and, therefore, trust the Al model

Different issue:

- Formalization is hard (no matter the source)
- But the same effort is repaid in trust
- The real question is: how much knowledge should I really encode in a formal way?

The function of knowledge: prescriptive

Enthusiast: If I know how to do addition, you should not learn it from data Critic: Maybe there is a better way to do addition

Knowledge: prescriptive (how)

- addition(X,Y,Z):- digit(X,N1), digit(Y,N2), Z is N1 + N2
- More general: without the knowledge you can't solve the task at all
 - Complete
 - Consistent

The **function** of knowledge: <u>towards</u> **descriptive**

Knowledge should be used for expressing what we care about (**what**) E.g.:

- Constraints that MUST be satisfied;
 - Aka: I want addition to be done only in that way
- Values:
 - Learn whatever you want as far as this property is guaranteed
- Knowledge is limited to what really matters to the human;
- Knowledge is part of the definition of the task itself; the user should still specify

What should NeSy be about?

Most of Al use (forms of) human knowledge;

Symbolic format is hard but allows to get guarantees

We should move (in all AI) to **descriptive** knowledge (the **what** we want, constraints) as much as possible

In **NeSy**, the role of knowledge should be:

- not to replace learning,
- to **shape the landscape** in which learning occurs

Challenges

- The role of human specification is under-looked
 - Alignment in semantics human-machine
 - E.g. reasoning shortcuts / identifiability issues

- Formalization of "what" is not necessarily easier
 - Hard "what": fairness, privacy, ethical behaviour

Not a new way of doing NeSy, but a reframe of its scope

Thank you!