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Abstract. Privacy regulations require the erasure of data from deep
learning models, a challenge that is amplified in Federated Learn-
ing, where retraining from scratch is often infeasible. My research
work aims to define an efficient Federated Unlearning framework
based on information theory, modeling leakage as a parameter esti-
mation problem. The idea is to use second-order Hessian informa-
tion to identify and selectively reset only parameters most sensitive
to the data being forgotten, followed by minimal federated retrain-
ing. This model-agnostic approach supports client and categorical
unlearning without requiring server access to raw client data after
initial information aggregation. Evaluations on benchmark datasets
demonstrate strong privacy (MIA success near random, categorical
knowledge erased), high performance (Normalized Accuracy con-
cerning the retrained benchmarks of » 0.9), and significant efficiency
over full retraining, offering a practical solution for data forgetting in
FL.
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1 Introduction

Deep learning models, fueled by vast and ever-growing datasets, are
achieving unprecedented success across diverse domains, revolution-
izing industries from healthcare to finance. However, this deep de-
pendency creates a pressing privacy paradox: the very models we
rely on for their learning capabilities can become liabilities, inad-
vertently memorizing and potentially exposing sensitive user infor-
mation [13, 3]. With stringent international privacy regulations, such
as GDPR and CCPA championing data sovereignty and firmly es-
tablishing individuals’ Right To Be Forgotten [16, 4], the imperative
for machine learning systems to unlearn specific data is no longer
an academic concern but a critical operational and ethical need for
organizations worldwide.

Consider a collaborative diagnostic model for detecting a rare dis-
ease, trained using Federated Learning (FL) across a consortium of
hospitals. One of the hospitals, which initially consented to their
medical imagery being used, later decided to withdraw from the
study, invoking their “Right to Be Forgotten”. The consortium is now
legally and ethically obligated to ensure the global model no longer
retains any information learned from this specific sensitive data.
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This demand for controlled forgetting presents a relevant chal-
lenge, particularly when amplified by the decentralized architecture
of Federated Learning. In FL environments, data is intentionally kept
decentralized across multiple client devices to enhance privacy and
security. While this is a strength, it complicates the task of data
removal. The most straightforward solution, which involves com-
pletely retraining the global model from the ground up without the
data of the requesting client, is an economically and computation-
ally expensive non-starter in most practical federated learning (FL)
systems. Its prohibitive costs, especially concerning communication
and computation, become insurmountable in dynamic settings with
high client turnover or when dealing with large-scale models and
datasets [12, 2, 14]. This doctoral research project ventures into this
complex and crucial terrain. I aim to develop innovative Federated
Unlearning (FU) approaches that effectively reconcile the stringent
demands of data privacy and erasure with the operational realities and
inherent efficiencies expected of distributed artificial intelligence.

In my work, I introduced an innovative framework that involves
defining information leakage as a parameter estimation problem. My
research proposes a targeted and efficient algorithm for unlearning.
By utilizing second-order Hessian diagonal information (obtained
after initial training) to pinpoint the parameters most influential in
unlearning the data, the method selectively resets only this critical
subset. A brief, minimal retraining step completes the process. This
approach demonstrates considerable versatility, as it applies to vari-
ous network architectures and handles both client-level and categori-
cal unlearning needs. Designed for the federated context, it facilitates
server-side unlearning with significantly reduced retraining overhead
while upholding client data privacy through reliance on aggregated
Hessian statistics.

In Balordi et al. [1], we presented the mathematical framework and
validated it through a series of experiments.

2 Related Works

Federated Unlearning (FU) extends Machine Unlearning (MU) to
federated learning (FL) environments, but faces unique challenges:

e Distributed Data & Privacy Constraints: Centralized MU tech-
niques like SISA (sharded retraining) or influence functions do
not directly translate to FL. In FL, data remain on clients, com-
munication is costly, and direct data access is prohibited, making



shard-based retraining or expensive influence-function computa-
tions impractical [2, 9, 6].

o Retraining-Based/Approximation Methods: Methods that ap-
proximate full retraining (e.g., via knowledge distillation) still
require multiple communication rounds and heavy computation.
Their unlearning guarantees are hard to quantify, and accuracy
can degrade when unlearning large data fractions or in complex
models [17, 18, 6].

o Gradient/Update Manipulation: Techniques that attempt to
“undo” forgotten clients’ contributions by inverting or perturbing
gradients are largely heuristic. They may force mispredictions but
do not reliably erase memorized information, leaving models vul-
nerable to membership inference or reconstruction attacks [7, 3].

e Parameter Masking/Perturbation: Approaches that prune or
add noise to parameters associated with forgotten data struggle
to identify the correct subset of weights, as dependencies in deep
FL models are complex. Tuning these modifications is non-trivial
and often degrades utility [5, 10, 15].

Overall, FU must account for FL’s distributed nature, communica-
tion constraints, and strict privacy requirements [11, 8]. Existing FU
categories—retraining approximations, gradient manipulations, and
parameter perturbations—each have significant practical and theoret-
ical limitations when applied to large-scale, deep federated models.

3 A Precision-Based Unlearning Framework

The prohibitive cost of full retraining in Federated Learning (FL) de-
mands a more intelligent approach to unlearning. Our research pro-
poses a novel framework that moves away from brute-force methods
and instead treats unlearning as a form of precise model surgery. The
core philosophy is to operate directly on the final, fully-trained model
to surgically identify, erase, and then reintegrate knowledge, all while
respecting the foundational privacy and communication constraints
of the federated environment. This process is structured into three
distinct, sequential steps.

3.1 Quantifying Parameter Influence via
Second-Order Statistics

The first and most critical challenge is to determine which parts of
the model have been most influenced by the data we now wish to for-
get (the rarget dataset). Accomplishing this without violating client
privacy is paramount.

The approach sidesteps the need for direct data access by lever-
aging second-order information. We task the clients with a specific
local computation. For each client, its local dataset is partitioned into
two subsets: the data to be forgotten (D(f )) and the data to be re-
tained (D). The client then computes the diagonal of the Hessian
of the loss function separately for each subset. Conceptually, the Hes-
sian diagonal measures the curvature of the loss landscape for each
parameter. A high value indicates that a parameter is highly sensitive
and critical to minimizing loss for that specific data. By computing
this for both the "forget" and "retain" data, clients generate a rich,
privacy-safe summary of parameter importance.

These two Hessian diagonals per client are then sent to the central
server. The server aggregates them to form a global view, allowing it
to calculate a final information score for each parameter in the model.
This score effectively quantifies how much more influential a given
parameter is for the forgotten data compared to the retained data.

This step directly addresses the Inscrutable Local Datasets chal-
lenge, widely discussed in the literature [12], by replacing risky data
sharing with the communication of aggregated statistical summaries.

3.2 Targeted Knowledge Erasure through Parameter
Resetting

With the information scores in hand, the server can now pinpoint the
exact locations in the model where knowledge of the target dataset
is most heavily encoded. Instead of attempting a complex and often
unstable reversal of past gradient updates—a process complicated by
the Iterative Learning nature of FL—we perform a direct and deci-
sive action.

We introduce a key hyperparameter, the removal percentage
(@removal), Which defines the fraction of parameters to be targeted.
Within each layer of the model, the server identifies the parame-
ters with the highest information scores. These parameters—the ones
most "responsible” for memorizing the target data—are then reset to
their original, random initial values from before training began. This
action effectively induces amnesia in the most critical parts of the
network, severing the learned connections that were formed based
on the now-unwanted data. This approach is highly flexible, as the
target dataset can be defined to correspond to a specific client, a sub-
set of samples, or an entire data class, thus addressing all primary FU
objectives.

3.3 Efficient Model Recovery via Focused Fine-Tuning

Resetting parameters inevitably results in a temporary decline in the
model’s overall performance. The final step is to recover this perfor-
mance efficiently, without re-introducing the influence of the forgot-
ten data. A complete retraining epoch on the remaining data would
be computationally expensive and slow.

Our framework employs a far more efficient method. We utilize
a custom wrapper module, which we term RelearnNet, to man-
age the retraining process. This module freezes all the parameters
that were not reset, preserving the vast majority of the knowledge
learned from the retained data. It then exposes only the newly reset
parameters as trainable. A single, brief federated fine-tuning epoch
is then conducted. During this epoch, clients use only their retained
data (D™) to compute updates, and only the reset parameters are
adjusted.

The underlying assumption, validated by our experiments, is that
the model’s overall structure remains close to an optimal state for the
retained data. The reset parameters need to be "re-integrated" into
this existing, well-trained structure. A single, focused epoch is suf-
ficient for them to learn appropriate values and restore the model’s
predictive accuracy, completing the unlearning process with a min-
imal fraction of the cost of full retraining. This addresses the chal-
lenge of efficiency head-on, making unlearning a practical operation
rather than a catastrophic expense.

4 Future Works

We plan to extend our framework in several directions:

e Adapting it to fully non-deterministic federated training, leverag-
ing richer second-order information (e.g., block-diagonal or full-
Hessian approximations).

e Explore adaptive hyperparameter tuning for unlearning rates and
fine-tuning durations.
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