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Abstract. Knowledge Extraction (KE) is the process of extracting
knowledge from data. Until recent advances in NLP, KE was mostly
confined to structured data. With the advent of Large Language Mod-
els (LLMs), performing KE on unstructured data such as natural lan-
guage documents is gaining momentum. In Natural Language Pro-
cessing (NLP) core tasks such as Named Entity Recognition are close
to KE. However, the tasks definitions are biased towards discrimina-
tive methods and not well-suited for generative ones. Moreover, mod-
els are usually domain-specific and work in a closed setting. In this
paper we reframe tasks towards a more general, knowledge-oriented
and generative-friendly way in order to explore existing capabilities
of LLMs in core NLP tasks. In addition, we propose fine-tuning as a
method to instruct LLMs to learn these skills. Our findings suggest
that base models are unsuited to the tasks, while fine-tuning is a good
method to instruct LLMs to perform Knowledge Extraction. Further-
more, the use of generative methods on these tasks opens up the way
to open-world and domain-free models.

1 Introduction
Human knowledge is a valuable asset. Historically, knowledge is

passed on using language, for example, through books. To leverage
such knowledge, humans have to read. Unlike humans, machines
struggle with knowledge, and up until recently were only effective
at extracting information from structured data. The first approaches
to knowledge extraction from unstructured data stem from Informa-
tion Retrieval, specifically Information Extraction.

The last decade’s progress in NLP and the advent of LLMs created
new possibilities for knowledge extraction. However, the conceptu-
alization of knowledge extraction tasks in NLP is, to some extent,
tailored to pre-LLM approaches, creating a contrast between genera-
tive AI systems and knowledge extraction tasks and resources.

In this paper we investigate knowledge extraction under the lens
of generative AI and address the following research questions:

• What are the current capabilities of existing pre-trained LLM in
performing Knowledge Extraction?

• Is prompting enough to elicit the desired behaviour in pre-trained
LLMs?

• Is there a way we can teach/enhance such capabilities?

2 Tasks
The adaptation of traditional NLP core tasks such as Named En-

tity Recognition and Relation Extraction poses an interesting prob-
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lem for generative models due to tasks definitions. These definitions
were conceived when NLP techniques were different from today’s,
and with a closed world in mind. Previous methods used sequence
labelling or span-based extraction framing, which originated in clas-
sification, where each token or phrase is assigned a label. By contrast,
today’s generative models can generate words not found in the orig-
inal input, therefore escaping the closed world and posing the prob-
lem of evaluating such outputs. The available technology also lead
to a conceptualization of knowledge extraction which agglomerates
multiple tasks. For example, NER, defined as a sequence-labeling
task, in principle could be conceptualized as the combination of two
separate tasks: Named Entity Identification (NEI) and Named Entity
Classification (NEC).

In the rest of the section we reframe these tasks in a more general
set-oriented way in order to capture the behaviour of modern gener-
ative models. Moreover, we split the tasks into subtasks, decoupling
identification and classification.

2.1 Entity Name Recognition (ENR)
Named Entity Recognition (NER) is a long-standing task in NLP

and arguably one of the most studied [7]. With the advent of LLMs
there have been numerous attempts using generative models [9]. One
of the earliest approach is GPT-NER [8] which uses a generative
model [1] to generate strings with delimited entities. Other relevant
approaches include GLiNER [10] which uses BERT [3] as back-
bone achieving SOTA performance and UniversalNER [11]. These
attempts all have in common the idea of moving from closed Infor-
mation Extraction to open Information Extraction. In its most com-
mon formulation, NER is framed as a sequence labelling task, most
often using IOB tagging [5] or as a span-based extraction task. How-
ever, these definitions fail to capture the flexibility of modern gen-
erative language models, as the output is strictly dependent on the
surface string, thus on the words forming up a named entity.

Example 1 (Similar names).
Text: “John F. Kennedy was president of the United States”
GT: {“John F. Kennedy”, “United States”}
Possible output: {“John Kennedy”, “US”}.

Ground truth and output refer to the same concept, however due
to the task definition the answer would be deemed incorrect. A tra-
ditional model, instead would produce the exact same surface string
and thus be less penalized. To address the limitations of the list-based
definitions, we propose a parallel set-based definition in which we
identify Entity Names as unique identifiers. This definition allows us



better to capture the generative part of modern language models and
form a basis for a more general and knowledge-oriented framing of
the NER task. We emphasize that NER and ENR are different tasks.
NER identifies and classifies all entities in a text, while ENR identi-
fies and classifies unique entities names, abstracted from the text.

2.2 Entity Name Identification (ENI)
In this task we are concerned with finding Entity Names from text.

The model should recognize the Entity Names without identifying
all the instances, which is the main difference between ENI and NEI.
Moreover, the type of the Entity Name should not lead to a duplicate
entity at this stage. As in Example 2 on page 2 “JFK” should not
appear twice.

2.3 Entity Name Classification (ENC)
In this task we provide the text as well as the Entity Names con-

tained therein as input, and we expect to have the Entity Names be
cast and associated to types as output. This step is crucial as it al-
lows for concepts that appear in text with multiple instances to be
correctly framed with respect to their type.

Example 2.

Input text: “John Kennedy, also called JFK served as United States
president ... The homonymous JFK airport ...”
Input names: {“JFK”, “ United States”}
Output: {(“JFK”, PER), (“JFK”, LOC), (“United States”, LOC)}.

In this definition, we don’t specify types beforehand, allowing
generative models to be creative about new types. Since the task de-
pends on associated types, we also define a variation called ENC+t
that provides the set of types to choose from. This variation is used
to guide modern language models to follow pre-defined ontologies.

3 Experiments
In order to investigate the performance of Pretrained Language

Models (PLM) in the proposed tasks related to our research ques-
tions, we propose the following experiments. Each experiment in-
volves the use of all the selected models applied to one task. We con-
sider for each task the following models: a base SLM, an instruction-
tuned version of it, a fine-tuned version of the instruction-tuned one,
two SOTA LLMs.

Experiment description In each experiment, the model is
prompted to extract relevant elements and returning structured out-
put. We enforce strict rules for output formatting using an XML-like
structure defined by a Context-Free Grammar. We instruct the mod-
els to use additional tokens to delimit extracted knowledge, which is
crucial for fine-tuning and evaluation to match the ground turht. For
the fine-tuned SLM we utilize QLoRA [2] and train a different model
for each task.

Models We selected the Llama 3 family of models [4] as prominent
decoder-base architecture. The chosen SOTA models are GPT-4.1-
mini and GPT-4.1.

Dataset The CoNLL-2023 [7] is a standard dataset in NLP literature
for NER. It is a manually annotated dataset and is pre-split into three
segments. We use only the English part of the dataset which contains
≈ 300′000 tokens across the three splits, the distribution of entities
is the same across each of the splits. The dataset is in CoNLL format,
a type of IOB [5]. We converted it to a set-based format that we refer
to as “T2G”, where each entity is a tuple. The first element is the
entity name made up of original text’s tokens, the second is the type.

Metrics We use the metrics from SemEval 2013 Task 9 [6]. More
specifically: Partial boundary for ENI; Type for ENC; Strict for ENR.
We use macro average for aggregation as for our research questions
it is more important to understand the overall performance of the
classifier rather than the performance per-class. Moreover, since we
moved to a set-based approach, we penalize over/undergenerated en-
tities.

Experimental setup We set each experiment with the same hyper-
parameters, fixing the seeds (6, 42, 1234) and averaging across the
three. The most prominent hyperparameter being temperature = 0.5.
For fine-tuning: LoRA: r = 64, α = 128, dropout = 0.05, 4bit
quantization with NF4 format; epochs = 3, warmup equaling 10%
of the training process. Experiments carried out using Nvidia R© RTX
4090.

4 Results and discussion

model ENI (partial) ENC (type) ENR (strict)

Llama-3.2-1B 0.019 ± 0.003 0.001 ± 0.000 0.000 ± 0.000
gpt-4.1-mini 0.647 ± 0.002 0.021 ± 0.001 0.030 ± 0.004
gpt-4.1 0.672 ± 0.002 0.025 ± 0.006 0.001 ± 0.000
Llama-3.2-1B-FT 0.709 ± 0.002 0.712 ± 0.000 0.664 ± 0.001

Table 1.
Base PLM have shown no potential with respect to examined tasks,
thus we omit reporting results. This is likely due to the fact base
PLMs are trained to complete the input given by the user rather than
executing instructions.

Instruction-tuned PLM have shown little potential. Most of the
times the obtained output is not structured enough to be parsed cor-
rectly, therefore producing scarce results.

SOTA PLMs are capable of producing structured results without
fine-tuning, however failed in ENC/ENR due to mismatches between
expected/predicted types (e.g. PER and Person).

Fine-tuned PLM have shown the most potential. The models
could reliably perform the proposed tasks.

These experiments results show that a smaller SOTA model can
complete the tasks, but a specialised SLM can surpass them, sug-
gesting the domain is crucial. The main problem with the tasks lies
in correctly classifying types. The SOTA LLMs failed at ENC due to
the fact they cannot access the correct types. This can be solved by
performing ENC+t or defining metrics that use substring matching
instead of exact matches for types.

5 Conclusion and future work
This paper investigates new formulations of classical NLP tasks to

account for the generative nature of modern LMs.
We have conducted an initial experimentation with a SLM (1B)

LLM and two SOTA LLMs. SLMs have not exhibited the desired
behaviour using prompting alone, however we are led to believe that
models of increasing size may yield better results.

As this is a preliminary study, in the future we plan to enrich the
conceptualization with a formal definition, as well as a definition of
an alignment task between ENR/NER and ENI/NEI.

Furthermore, we plan to expand our experiments with more em-
phasis on ENC/ENC+t and a comparison with SOTA methods for
NER. Moreover, we will define new metrics that better capture the
generative nature of LLMs as the existing ones over-penalized SOTA
PLMs and offered little insight into their true performance.
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