Flexible, Lifelong, Explainable, and Robust Solutions for
Multi-Agent Path Finding Problems

Aysu Bogatarkan

Sabanci University, Istanbul, Turkey
ORCID (Aysu Bogatarkan): https://orcid.org/0000-0003-3363-1987

For the success of Artificial Intelligence (AI) applications, two of
the important features (and challenges) needed to be addressed by
them are flexibility and explainability. A flexible Al method devel-
oped to solve a problem can accommodate variations of the prob-
lem, and thus can be used to investigate different options for a bet-
ter understanding. An explainable AI method can provide answers to
queries about the (in)feasibility and the optimality of solutions. In ad-
dition to being flexible and explainable, it is desired for AI methods
to provide robust and lifelong solutions for the problems. A robust
solution for an Al application can still be used even after unexpected
errors occur, and a lifelong Al method can adapt to changes during
operation. One of the well-studied problems in Al that necessitates
solutions for these challenges is the multi-agent path finding (MAPF)
problem.

MAPF problem is a combinatorial search problem that aims to
find paths for multiple agents in an environment (e.g., robots in an
autonomous warehouse) such that no two agents collide with each
other or obstacles, and subject to some constraints on the plan length.
MAPF with constraints on plan lengths is intractable [15]. Optimal
solutions for MAPF are usually found by optimizing the makespan
or the total plan length. According to the needs of the application,
other optimization functions can be used. MAPF has been studied
in various domains, such as robotics [10], autonomous warehouse
systems [17], traffic control [5], and video games [16].

This study focuses on introducing flexible, lifelong and robust
methods for MAPF and its variants, and explainable frameworks for
some MAPF variants. In all of our solutions, we utilize Answer Set
Programming (ASP) [12, 14, 11]—a logic programming paradigm
based on answer sets [9, 8] and implement our methods using the
ASP solver CLINGO [6].

Flexible Solutions for MAPF

For some real-world applications, being able to solve MAPF problem
may not be enough to address all challenges or the realistic condi-
tions of the application. For instance, in real-world automated ware-
houses, the robots’ battery levels change as they travel and they may
need to be charged to complete their tasks. Furthermore, some parts
of the warehouses with human occupants or tight passages may re-
quire robots to move slowly to ensure safety. One aim of our study is
to address these issues with with flexible frameworks in the spirit of
elaboration tolerance [13].

To be able to address more realistic scenarios, a mathematical
model general enough to handle multi-modal transportation condi-

tions and multi-objective optimizations is needed. Furthermore, the
computational framework is required to be flexible such that a large
set of variations of MAPF problems can be addressed. Motivated
by these challenges, we mathematically modelled a general version
of MAPF (called mMAPF- multi-modal MAPF with resources) as
a rich graph problem and introduced a flexible method to solve
mMAPF declaratively, using ASP. Our method can handle the fol-
lowing variations of MAPF: multi-objective optimization, waypoints,
resource constraints and multi-modal transportation.

Details of the mathematical model and the ASP formulation can
be found in our paper, Multi-Modal Multi-Agent Path Finding with
Optimal Resource Utilization [4].

Explainable Solutions for MAPF

We also investigate the challenge of explainability for mMAPF prob-
lems, considering queries about the (in)feasibility and the optimality
of solutions, along with queries about observations about these so-
lutions. Given a solution for mMAPF, our explainable framework is
able to explain infeasibility or nonoptimality of this solution, confirm
its feasibility and suggest alternatives for the solution, and provide
explanations for some queries, utilizing counterfactual reasoning and
identifying violations of constraints. For instance, suppose that an
mMAPF solution is being executed in a warehouse and an engineer
in this warehouse would like to check whether some modifications
of this mMAPF solution would still be feasible or not.

Explaining infeasibility. If the modified solution is found infeasible,
e.g., using the ASP methods introduced by Bogatarkan et al. [4], then
an explanation regarding its infeasibility could be “due to collisions
with obstacles or other robots”, or “due to low battery-level”.

Explaining nonoptimality. If the modified solution is not optimal,
then an explanation regarding its nonoptimality could be “because
some more time is needed to complete tasks” or “because some more
charging is required”.

Confirming feasibility and suggesting alternatives. Suppose that the
modified solution is found feasible. Furthermore, a better solution
(e.g., where the tasks are completed earlier) is computed. Then, in
addition to confirming the feasibility of the plan, it would be useful
to provide this alternative solution to the engineer.

In an alternative scenario, suppose that the engineer would like to
better understand the mMAPF solution being executed in the ware-
house, and asks various queries about it. For such queries, it will be
useful to generate explanations using counterfactuals.

Explaining why an agent is taking a longer path. Suppose that the
engineer observes that the agent is following a path that seems rather
long, and she wants to know why. An explanation could be that ‘if
the agent does not follow that itinerary then it will collide with other
robots.” Alternatively, an explanation could be “actually, there is no
need for the agent to take this long path, but it needs to follow a
different itinerary such as ...”.

Such queries and explanations would help the engineer to better
understand the strengths and weaknesses of the solution being exe-
cuted, as well as the limitations of the infrastructure.

With these motivating real life scenarios, we have introduced
a method for generating explanations for mMAPF. Our method
considers different types of queries about mMAPF, and generates
knowledge-rich explanations (including suggestions) for each type
of queries. For queries with affirmative answers, it generates alter-
native solutions as suggestions. For queries with negative answers,
it utilizes counterfactual reasoning and weighted weak constraints to
generate causality-based explanations and further recommendations.
Since our method is query-based, utilizing the elaboration tolerance
of ASP, it allows a sequence of interactive query answering by means
of hypothetical reasoning.

Details of the algorithm and the ASP formulations, together with
more examples and experimental evaluations are presented in our
paper, Explanation Generation for Multi-Modal Multi-Agent Path
Finding with Optimal Resource Utilization using Answer Set Pro-
gramming [1].

Lifelong Solutions for MAPF

In a warehouse that is not completely autonomous, some changes
may occur during the execution of a plan: existing agents may leave
the environment, or new agents may be included in the team with new
tasks, existing obstacles may be removed from the environment or
moved to some other location in the environment. To be able to han-
dle these changes, we have defined a general Dynamic Multi-Agent
Path Finding (D-MAPF) problem and introduced multiple lifelong
methods to solve this problem.

One of the possible solutions for D-MAPF is replanning: consider
anew MAPF instance defined by the current locations and goal loca-
tions of both the existing and the new agents, and the updated envi-
ronment, and compute a solution for this instance. Although replan-
ning finds a solution, if one exists, it does not re-use the plans of the
existing agents and may not be computationally efficient.

With this motivation, we proposed a novel method to solve D-
MAPF, using Answer Set Programming (ASP). The main idea (and
novelty) of this method is, instead of replanning for all the agents
right away, to revise and augment the existing MAPF solution: (re-
vise) try to schedule the waiting times of existing agents as they tra-
verse the rest of their paths, (augment) while computing paths for the
new agents within a given makespan (i.e., the length of the plan). In
this way, the paths for the existing agents can be re-used as part of
the new plan. We implemented this framework using Python and the
ASP solver CLINGO. In our experimental evaluations, we observed
that the re-use of plans as proposed by our method improves the com-
putational efficiency in timings significantly compared to replanning.

The problem definition, ASP formulation, algorithm and experi-
mental evaluations are described in detail in our paper A Declarative
Method for Dynamic Multi-Agent Path Finding [3].

In a more recent study, we investigated D-MAPF problem fur-
ther. We introduced a rigorous definition for D-MAPF, that is gen-
eral enough to cover 1) various changes in the environment and

the team of agents over time, 2) different objective functions on
plans, and 3) different assumptions on appearances/disappearances
of agents, and that is not specifically oriented towards a particular
method. We introduced a new framework to solve D-MAPF, that is
general and flexible enough to allow different replanning and/or re-
pairing methods. With the motivation of a modular architecture and
efficient computations, our framework utilizes multi-shot computa-
tion [7] of ASP, unlike our previous work [3], where single-shot ASP
was used. Multi-shot solving allows changes to the input ASP pro-
gram in time, by introducing an external control to the ASP system,
allowing adding and grounding new programs, assigning truth val-
ues of some atoms, and solving the updated program, while the ASP
system is running.

‘We designed and implemented the Replan-All (that replans for ev-
ery agent after each change) and Revise-and-Augment methods using
multi-shot ASP, and integrated them in the general D-MAPF frame-
work. We empirically observed that multi-shot Replan-All is compu-
tationally more efficient but sometimes dramatic changes in the paths
of the existing agents occur in the recomputed plans. Such changes
are not desired from the perspective of real-world applications. For
instance, in a warehouse where robots collaborate with human work-
ers, changes in the routes of robots might be unexpected, distracting,
unsafe, and inefficient for human workers.

With this motivation, we introduced a new method for D-MAPF,
called Revise-and-Augment-in-Tunnels, that combines the advan-
tages of these two methods. Unlike Revise-and-Augment, this
method does not require that every existing agent follow their ex-
isting paths while revising their plans. Instead, it creates a “tunnel”
for each existing agent, that consists of the agent’s existing path and
the neighboring locations within a specified “width”. It allows ev-
ery existing agent to follow a path within their own tunnel while
it revises their plans. At the same time, it computes plans for the
new agents and augments these plans with the revised plans, respect-
ing the collision constraints. As the tunnel width gets larger (resp.
smaller), the Revise-and-Augment-in-Tunnels method gets closer
to the Replan-All method (resp. the Revise-and-Augment method).
We implemented the Revise-and-Augment-in-Tunnels method using
multi-shot ASP, and integrated it in our D-MAPF framework. We de-
signed and performed experiments to better understand the strengths
and the weaknesses of this new method, considering computational
performance (in time) and quality of solutions (in terms of plan
changes).

Details of our general framework, the problem definition, ASP for-
mulations, and experimental evaluations are can be found in in our
paper A General Framework for Dynamic MAPF using Multi-Shot
ASP and Tunnels. [2].

Ongoing and Future Work

Currently, we are working on more extensive evaluations by consid-
ering additional benchmarks and evaluation metrics. We will conduct
theoretical analysis for our methods by considering computational
complexity and investigating correctness of our methods.

Besides investigating our existing methods further, we have pro-
gressed in a novel method for defining robustness of MAPF plans, to
be able to address more challenges of real-life applications. We are
evaluating our method with experiments.

In addition to new methods and problems, we aim to consider
some real-life applications of MAPF and demonstrate our methods
on some selected real-world applications. For this purpose, we are
collaborating with a logistics company.

References

[1]

[2]

3

4

[5]

[7]

[8

[9]

[10]

[11]
[12]

A. Bogatarkan and E. Erdem. Explanation generation for multi-modal
multi-agent path finding with optimal resource utilization using an-
swer set programming. Theory Pract. Log. Program., 20(6):974-989,
2020. doi: 10.1017/S1471068420000320. URL https://arxiv.org/abs/
2008.03573.

A. Bogatarkan and E. Erdem. A general framework for dynamic mapf
using multi-shot asp and tunnels. In Proceedings of the 41st Interna-
tional Conference on Logic Programming (ICLP 2025), 2025.

A. Bogatarkan, V. Patoglu, and E. Erdem. A declarative method for
dynamic multi-agent path finding. In Proc. of the Global Conference
on Artificial Intelligence, pages 54-67, 2019. doi: 10.29007/cnzw.

A. Bogatarkan, E. Erdem, A. Kleiner, and V. Patoglu. Multi-modal
multi-agent path finding with optimal resource utilization. In Pro-
ceedings of 5th International Conference on the Industry 4.0 Model
for Advanced Manufacturing, pages 313-324, 2020. doi: 10.1007/
978-3-030-46212-3_24.

K. M. Dresner and P. Stone. A multiagent approach to autonomous in-
tersection management. J. Artif. Intell. Res. (JAIR), 31:591-695, 2008.
doi: 10.1613/jair.2502.

M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and
M. Schneider. Potassco: The potsdam answer set solving collection. A/
Commun., 24(2):107-124, Apr. 2011. ISSN 0921-7126. doi: 10.5555/
1971622.1971623.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-shot asp
solving with clingo. Theory and Practice of Logic Programming, 19(1):
27-82,2019. doi: 10.1017/S1471068418000054.

M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In Proceedings of International Logic Programming Con-
ference and Symposium, pages 1070-1080. 1988.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9:365-385, 1991.
doi: 10.1007/BF03037169.

J. Lee and W. Yu. A coarse-to-fine approach for fast path finding for
mobile robots. In Proc. of IROS, pages 5414-5419, 2009. doi: 10.1109/
IROS.2009.5354686.

V. Lifschitz. Answer set programming and plan generation. Artificial
Intelligence, 138:39-54, 2002. doi: 10.1016/S0004-3702(02)00186-8.
V. Marek and M. Truszczynski. Stable models and an alternative logic
programming paradigm. In The Logic Programming Paradigm: a 25-
Year Perspective, pages 375-398. Springer Verlag, 1999. doi: 10.1007/
978-3-642-60085-2_17.

J. McCarthy. Elaboration tolerance. In Proc. of CommonSense, 1998.

4] I. Niemeld. Logic programs with stable model semantics as a constraint

programming paradigm. Annals of Mathematics and Artificial Intelli-
gence, 25:241-273, 1999. doi: 10.1023/A:1018930122475.

D. Ratner and M. K. Warmuth. Finding a shortest solution for the n
X n extension of the 15-puzzle is intractable. In Proc. of AAAI, pages
168-172, 1986.

T. S. Standley and R. E. Korf. Complete algorithms for cooperative
pathfinding problems. In Proc. of IJCAI, pages 668-673, 2011. doi:
10.5591/978-1-57735-516-8/IJCAI11-118.

P. R. Wurman, R. D’Andrea, and M. Mountz. Coordinating hundreds
of cooperative, autonomous vehicles in warehouses. Al Magazine, 29
(1):9-20, 2008. doi: 10.1609/aimag.v29i1.2082.

