
Flexible, Lifelong, Explainable, and Robust Solutions for

Multi-Agent Path Finding Problems

Aysu Bogatarkan

Sabanci University, Istanbul, Turkey

ORCID (Aysu Bogatarkan): https://orcid.org/0000-0003-3363-1987

For the success of Artificial Intelligence (AI) applications, two of

the important features (and challenges) needed to be addressed by

them are flexibility and explainability. A flexible AI method devel-

oped to solve a problem can accommodate variations of the prob-

lem, and thus can be used to investigate different options for a bet-

ter understanding. An explainable AI method can provide answers to

queries about the (in)feasibility and the optimality of solutions. In ad-

dition to being flexible and explainable, it is desired for AI methods

to provide robust and lifelong solutions for the problems. A robust

solution for an AI application can still be used even after unexpected

errors occur, and a lifelong AI method can adapt to changes during

operation. One of the well-studied problems in AI that necessitates

solutions for these challenges is the multi-agent path finding (MAPF)

problem.

MAPF problem is a combinatorial search problem that aims to

find paths for multiple agents in an environment (e.g., robots in an

autonomous warehouse) such that no two agents collide with each

other or obstacles, and subject to some constraints on the plan length.

MAPF with constraints on plan lengths is intractable [15]. Optimal

solutions for MAPF are usually found by optimizing the makespan

or the total plan length. According to the needs of the application,

other optimization functions can be used. MAPF has been studied

in various domains, such as robotics [10], autonomous warehouse

systems [17], traffic control [5], and video games [16].

This study focuses on introducing flexible, lifelong and robust

methods for MAPF and its variants, and explainable frameworks for

some MAPF variants. In all of our solutions, we utilize Answer Set

Programming (ASP) [12, 14, 11]—a logic programming paradigm

based on answer sets [9, 8] and implement our methods using the

ASP solver CLINGO [6].

Flexible Solutions for MAPF

For some real-world applications, being able to solve MAPF problem

may not be enough to address all challenges or the realistic condi-

tions of the application. For instance, in real-world automated ware-

houses, the robots’ battery levels change as they travel and they may

need to be charged to complete their tasks. Furthermore, some parts

of the warehouses with human occupants or tight passages may re-

quire robots to move slowly to ensure safety. One aim of our study is

to address these issues with with flexible frameworks in the spirit of

elaboration tolerance [13].

To be able to address more realistic scenarios, a mathematical

model general enough to handle multi-modal transportation condi-

tions and multi-objective optimizations is needed. Furthermore, the

computational framework is required to be flexible such that a large

set of variations of MAPF problems can be addressed. Motivated

by these challenges, we mathematically modelled a general version

of MAPF (called mMAPF– multi-modal MAPF with resources) as

a rich graph problem and introduced a flexible method to solve

mMAPF declaratively, using ASP. Our method can handle the fol-

lowing variations of MAPF: multi-objective optimization, waypoints,

resource constraints and multi-modal transportation.

Details of the mathematical model and the ASP formulation can

be found in our paper, Multi-Modal Multi-Agent Path Finding with

Optimal Resource Utilization [4].

Explainable Solutions for MAPF

We also investigate the challenge of explainability for mMAPF prob-

lems, considering queries about the (in)feasibility and the optimality

of solutions, along with queries about observations about these so-

lutions. Given a solution for mMAPF, our explainable framework is

able to explain infeasibility or nonoptimality of this solution, confirm

its feasibility and suggest alternatives for the solution, and provide

explanations for some queries, utilizing counterfactual reasoning and

identifying violations of constraints. For instance, suppose that an

mMAPF solution is being executed in a warehouse and an engineer

in this warehouse would like to check whether some modifications

of this mMAPF solution would still be feasible or not.

Explaining infeasibility. If the modified solution is found infeasible,

e.g., using the ASP methods introduced by Bogatarkan et al. [4], then

an explanation regarding its infeasibility could be “due to collisions

with obstacles or other robots”, or “due to low battery-level”.

Explaining nonoptimality. If the modified solution is not optimal,

then an explanation regarding its nonoptimality could be “because

some more time is needed to complete tasks” or “because some more

charging is required”.

Confirming feasibility and suggesting alternatives. Suppose that the

modified solution is found feasible. Furthermore, a better solution

(e.g., where the tasks are completed earlier) is computed. Then, in

addition to confirming the feasibility of the plan, it would be useful

to provide this alternative solution to the engineer.

In an alternative scenario, suppose that the engineer would like to

better understand the mMAPF solution being executed in the ware-

house, and asks various queries about it. For such queries, it will be

useful to generate explanations using counterfactuals.

Explaining why an agent is taking a longer path. Suppose that the

engineer observes that the agent is following a path that seems rather

long, and she wants to know why. An explanation could be that ‘if

the agent does not follow that itinerary then it will collide with other

robots.” Alternatively, an explanation could be “actually, there is no

need for the agent to take this long path, but it needs to follow a

different itinerary such as ...”.

Such queries and explanations would help the engineer to better

understand the strengths and weaknesses of the solution being exe-

cuted, as well as the limitations of the infrastructure.

With these motivating real life scenarios, we have introduced

a method for generating explanations for mMAPF. Our method

considers different types of queries about mMAPF, and generates

knowledge-rich explanations (including suggestions) for each type

of queries. For queries with affirmative answers, it generates alter-

native solutions as suggestions. For queries with negative answers,

it utilizes counterfactual reasoning and weighted weak constraints to

generate causality-based explanations and further recommendations.

Since our method is query-based, utilizing the elaboration tolerance

of ASP, it allows a sequence of interactive query answering by means

of hypothetical reasoning.

Details of the algorithm and the ASP formulations, together with

more examples and experimental evaluations are presented in our

paper, Explanation Generation for Multi-Modal Multi-Agent Path

Finding with Optimal Resource Utilization using Answer Set Pro-

gramming [1].

Lifelong Solutions for MAPF

In a warehouse that is not completely autonomous, some changes

may occur during the execution of a plan: existing agents may leave

the environment, or new agents may be included in the team with new

tasks, existing obstacles may be removed from the environment or

moved to some other location in the environment. To be able to han-

dle these changes, we have defined a general Dynamic Multi-Agent

Path Finding (D-MAPF) problem and introduced multiple lifelong

methods to solve this problem.

One of the possible solutions for D-MAPF is replanning: consider

a new MAPF instance defined by the current locations and goal loca-

tions of both the existing and the new agents, and the updated envi-

ronment, and compute a solution for this instance. Although replan-

ning finds a solution, if one exists, it does not re-use the plans of the

existing agents and may not be computationally efficient.

With this motivation, we proposed a novel method to solve D-

MAPF, using Answer Set Programming (ASP). The main idea (and

novelty) of this method is, instead of replanning for all the agents

right away, to revise and augment the existing MAPF solution: (re-

vise) try to schedule the waiting times of existing agents as they tra-

verse the rest of their paths, (augment) while computing paths for the

new agents within a given makespan (i.e., the length of the plan). In

this way, the paths for the existing agents can be re-used as part of

the new plan. We implemented this framework using Python and the

ASP solver CLINGO. In our experimental evaluations, we observed

that the re-use of plans as proposed by our method improves the com-

putational efficiency in timings significantly compared to replanning.

The problem definition, ASP formulation, algorithm and experi-

mental evaluations are described in detail in our paper A Declarative

Method for Dynamic Multi-Agent Path Finding [3].

In a more recent study, we investigated D-MAPF problem fur-

ther. We introduced a rigorous definition for D-MAPF, that is gen-

eral enough to cover 1) various changes in the environment and

the team of agents over time, 2) different objective functions on

plans, and 3) different assumptions on appearances/disappearances

of agents, and that is not specifically oriented towards a particular

method. We introduced a new framework to solve D-MAPF, that is

general and flexible enough to allow different replanning and/or re-

pairing methods. With the motivation of a modular architecture and

efficient computations, our framework utilizes multi-shot computa-

tion [7] of ASP, unlike our previous work [3], where single-shot ASP

was used. Multi-shot solving allows changes to the input ASP pro-

gram in time, by introducing an external control to the ASP system,

allowing adding and grounding new programs, assigning truth val-

ues of some atoms, and solving the updated program, while the ASP

system is running.

We designed and implemented the Replan-All (that replans for ev-

ery agent after each change) and Revise-and-Augment methods using

multi-shot ASP, and integrated them in the general D-MAPF frame-

work. We empirically observed that multi-shot Replan-All is compu-

tationally more efficient but sometimes dramatic changes in the paths

of the existing agents occur in the recomputed plans. Such changes

are not desired from the perspective of real-world applications. For

instance, in a warehouse where robots collaborate with human work-

ers, changes in the routes of robots might be unexpected, distracting,

unsafe, and inefficient for human workers.

With this motivation, we introduced a new method for D-MAPF,

called Revise-and-Augment-in-Tunnels, that combines the advan-

tages of these two methods. Unlike Revise-and-Augment, this

method does not require that every existing agent follow their ex-

isting paths while revising their plans. Instead, it creates a “tunnel”

for each existing agent, that consists of the agent’s existing path and

the neighboring locations within a specified “width”. It allows ev-

ery existing agent to follow a path within their own tunnel while

it revises their plans. At the same time, it computes plans for the

new agents and augments these plans with the revised plans, respect-

ing the collision constraints. As the tunnel width gets larger (resp.

smaller), the Revise-and-Augment-in-Tunnels method gets closer

to the Replan-All method (resp. the Revise-and-Augment method).

We implemented the Revise-and-Augment-in-Tunnels method using

multi-shot ASP, and integrated it in our D-MAPF framework. We de-

signed and performed experiments to better understand the strengths

and the weaknesses of this new method, considering computational

performance (in time) and quality of solutions (in terms of plan

changes).

Details of our general framework, the problem definition, ASP for-

mulations, and experimental evaluations are can be found in in our

paper A General Framework for Dynamic MAPF using Multi-Shot

ASP and Tunnels. [2].

Ongoing and Future Work

Currently, we are working on more extensive evaluations by consid-

ering additional benchmarks and evaluation metrics. We will conduct

theoretical analysis for our methods by considering computational

complexity and investigating correctness of our methods.

Besides investigating our existing methods further, we have pro-

gressed in a novel method for defining robustness of MAPF plans, to

be able to address more challenges of real-life applications. We are

evaluating our method with experiments.

In addition to new methods and problems, we aim to consider

some real-life applications of MAPF and demonstrate our methods

on some selected real-world applications. For this purpose, we are

collaborating with a logistics company.

References

[1] A. Bogatarkan and E. Erdem. Explanation generation for multi-modal

multi-agent path finding with optimal resource utilization using an-

swer set programming. Theory Pract. Log. Program., 20(6):974–989,

2020. doi: 10.1017/S1471068420000320. URL https://arxiv.org/abs/

2008.03573.

[2] A. Bogatarkan and E. Erdem. A general framework for dynamic mapf

using multi-shot asp and tunnels. In Proceedings of the 41st Interna-

tional Conference on Logic Programming (ICLP 2025), 2025.

[3] A. Bogatarkan, V. Patoglu, and E. Erdem. A declarative method for

dynamic multi-agent path finding. In Proc. of the Global Conference

on Artificial Intelligence, pages 54–67, 2019. doi: 10.29007/cnzw.

[4] A. Bogatarkan, E. Erdem, A. Kleiner, and V. Patoglu. Multi-modal

multi-agent path finding with optimal resource utilization. In Pro-

ceedings of 5th International Conference on the Industry 4.0 Model

for Advanced Manufacturing, pages 313–324, 2020. doi: 10.1007/

978-3-030-46212-3_24.

[5] K. M. Dresner and P. Stone. A multiagent approach to autonomous in-

tersection management. J. Artif. Intell. Res. (JAIR), 31:591–695, 2008.

doi: 10.1613/jair.2502.

[6] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and

M. Schneider. Potassco: The potsdam answer set solving collection. AI

Commun., 24(2):107–124, Apr. 2011. ISSN 0921-7126. doi: 10.5555/

1971622.1971623.

[7] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-shot asp

solving with clingo. Theory and Practice of Logic Programming, 19(1):

27–82, 2019. doi: 10.1017/S1471068418000054.

[8] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-

gramming. In Proceedings of International Logic Programming Con-

ference and Symposium, pages 1070–1080. 1988.

[9] M. Gelfond and V. Lifschitz. Classical negation in logic programs and

disjunctive databases. New Generation Computing, 9:365–385, 1991.

doi: 10.1007/BF03037169.

[10] J. Lee and W. Yu. A coarse-to-fine approach for fast path finding for

mobile robots. In Proc. of IROS, pages 5414–5419, 2009. doi: 10.1109/

IROS.2009.5354686.

[11] V. Lifschitz. Answer set programming and plan generation. Artificial

Intelligence, 138:39–54, 2002. doi: 10.1016/S0004-3702(02)00186-8.

[12] V. Marek and M. Truszczyński. Stable models and an alternative logic

programming paradigm. In The Logic Programming Paradigm: a 25-

Year Perspective, pages 375–398. Springer Verlag, 1999. doi: 10.1007/

978-3-642-60085-2_17.

[13] J. McCarthy. Elaboration tolerance. In Proc. of CommonSense, 1998.

[14] I. Niemelä. Logic programs with stable model semantics as a constraint

programming paradigm. Annals of Mathematics and Artificial Intelli-

gence, 25:241–273, 1999. doi: 10.1023/A:1018930122475.

[15] D. Ratner and M. K. Warmuth. Finding a shortest solution for the n

⇥ n extension of the 15-puzzle is intractable. In Proc. of AAAI, pages

168–172, 1986.

[16] T. S. Standley and R. E. Korf. Complete algorithms for cooperative

pathfinding problems. In Proc. of IJCAI, pages 668–673, 2011. doi:

10.5591/978-1-57735-516-8/IJCAI11-118.

[17] P. R. Wurman, R. D’Andrea, and M. Mountz. Coordinating hundreds

of cooperative, autonomous vehicles in warehouses. AI Magazine, 29

(1):9–20, 2008. doi: 10.1609/aimag.v29i1.2082.

