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Abstract. LiDAR is a critical sensor for autonomous vehicles, help-
ing them detect and understand their surroundings. But what hap-
pens when the sensor itself is compromised? In real-world driving,
LiDARs can be affected by everyday contaminants like water, mud,
dust, or engine oil. These substances can distort the data, causing the
vehicle to miss objects—or worse, see things that aren’t there—with
dangerous levels of confidence. Most current AI models are trained
in ideal, clean conditions and are not prepared for these real-world
challenges.

Our research tackles this problem by creating the first dataset of
real-world corrupted point cloud data affected by physical contami-
nation. We also develop an intelligent safety layer that detects when
LiDAR data is unreliable—before it affects critical decisions like
braking or turning. Designed to run on lightweight edge devices, our
system is fast, efficient, and adaptable. In future work, we aim to
make the system smarter through few-shot learning and uncertainty-
based decision support, helping autonomous vehicles become safer
and more trustworthy in the messy, unpredictable real world. Data
and code will be available at: https://gitlab.com/ecs-lab/lidaroc and
https://gitlab.com/ecs-lab/anzil.

1 Resilience is an Overlook Problem

Sensor contamination presents a critical challenge distinct from en-
vironmental conditions, as it directly affects raw sensor data, leading
to distorted or incomplete point clouds ([18]). Studies indicate that
even synthetic contamination significantly degrades performance,
with Gaussian noise reducing object detection accuracy from 80.57
to 61.20 ([5], [6, 24, 19] [8]) and LiDAR point reduction further im-
pacting performance ([1]).

Not only does it degrade accuracy, but more critically, it leads to
high-confidence false positives, false negatives, and ghost objects.
Built-in object detection systems often fail to address contamination
effectively, leading to false detections with high confidence scores
(e.g., 0.9 out of 1.0) [10]. Real-world contaminants such as mud and
lubricant degrade point cloud intensity and distort object geometry,
causing detection failures—including the ego-vehicle being misclas-
sified or pedestrians being missed (see Fig. 1). These issues pose crit-
ical safety risks, such as false emergency braking, yet are often unad-
dressed by built-in object detectors trained on clean data. Despite the
severity, real-world contamination in LiDAR perception remains un-
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derexplored, underscoring the need for robust, contamination-aware
detection systems [16], [2].

Figure 1. Example Pointcloud and 3D object detection result in data 20m
for (a) clean LiDAR, (b)corrupted due to mud_uniform_low, (c)corrupted

due to lubricant/oil_low.

2 Contributions
This research addresses a critical gap in autonomous vehicle percep-
tion: the lack of robustness under real-world LiDAR sensor contam-
ination. Existing object detection models often fail silently when ex-
posed to physical contaminants such as water, mud, or lubricant, pro-
ducing high-confidence false detections that can lead to catastrophic
decisions. To tackle this, we present a comprehensive, multi-level so-
lution.

Real-World Point Cloud Corruption Data We present LI-
DAROC [10], a real-world LiDAR corruption dataset collected using
a 128-channel RS-Ruby automotive-grade LiDAR. The dataset in-
cludes six physical contaminants—water, mud, dust, salt water, lubri-
cant, and foam—applied at three intensity levels via spraying, drip-
ping, and drying (3). LIDAROC comprises three subsets: tunnel-5m,
outdoor-10m, and outdoor-20m, covering different sensor-to-object
distances. Target objects include cars, motorcycles, pedestrians, and
reflectors (figure 4). An additional road-driving subset with in-situ
contamination is also included (5). LIDAROC addresses the gap in
existing large-scale datasets (e.g., KITTI [7], NuScenes [3], Waymo
[22]), which are limited to clean, ideal conditions ([20]). LIDAROC
is available here [11], [12], [13].



Figure 2. (Left) Proposed integration of contaminant detection as a safety layer in autonomous perception. (Right) Proposed Graph-based LiDAR
representation and contaminant detection via Graph Attention Networks.

Figure 3. Top: LiDAR contamination procedures in 5m setup: clean, (2)
cover-clean, (3–8) water, mud, dust, salt, lubricant, foam. Middle:

Scene-level corruption. Bottom: Object-level corruption.

Figure 4. Top: Environment setup. Middle & Bottom: Clean LiDAR point
cloud (top view). Target objects show varying point intensity based on

material and distance.

Figure 5. Point cloud of LIDAROC_road_mud in sparse traffic.

Perception Model Robustness Benchmarking We evaluate
the detection performance of state-of-the-art 3D object detec-
tors—PointRCNN, SECOND, Part-A2̂, and PointPillars—trained on
the KITTI dataset [21], [23] using only clean-labeled samples. Fol-
lowing [6], these models are assessed on physically corrupted point
cloud, simulating realistic deployment under sensor degradation.
Results show a notable decrease in accuracy and frequent high-

confidence misdetections, revealing the vulnerability of current de-
tectors to real-world LiDAR corruption [15]. Its open new problem
to develop robust object under real-world corrupted data.

Model-Agnostic, Generalizable Safety Layer for AI Pipelines
We propose ANZIL, a model-agnostic contaminant detection frame-
work based on graph representations and Graph Attention Networks
(GAT) [15] (figure 2). This method acts as a safety layer, filtering
out contaminated frames before they are processed by object de-
tection or segmentation modules, thereby enhancing system robust-
ness without requiring modifications to existing models. The use of
GATs provides robustness to variations in point cloud density, res-
olution, and intensity, outperforming traditional CNNs that struggle
with sparse spatial representations [14]. Unlike CNNs, which pro-
cess fixed grids—including empty space—graph-based methods se-
lectively focus on topological relationships between points, resulting
in more efficient and reliable feature extraction across diverse scenes
and LiDAR type [17]. The interaction between the safety system and
downstream perception is illustrated in Figure 2. Finally, we intro-
duce a cost-benefit evaluation methodology that quantifies the trade-
off between safety gains (e.g., reduction of high-confidence false de-
tections) and potential data loss, offering a practical metric for real-
world deployment.

Edge Deployment and Near-Sensor Classification Fourth, we
explore the edge deployment of our method on NVIDIA Jetson
AGX Xavier for real-time performance [15], and additionally de-
sign TinyLid, a lightweight 2D CNN for contaminant classification
implemented on RISC-V-based hardware for near-sensor, low-power
inference [9].

3 Future Directions
Binary labeling of LiDAR point clouds is insufficient; severity quan-
tification is required for quality-aware perception. A system must be
capable of deciding whether a point cloud should be accepted or
discarded based on its quality. As ongoing research, we propose a
few-shot LiDAR point cloud processing framework that enables both
classification and severity quantification of corruption. This frame-
work will also support real-time adaptation to novel types of contam-
ination through few-shot training. Our work contributes to building
robust AI perception models, particularly for object detection. Fu-
ture work includes investigating point cloud corruption as a physical
adversarial attack and its impact on perception reliability, bridging
the gap between simulated and real-world data [4], and using gen-
erative AI to synthesize realistic corrupted point clouds—advancing
robustness from theory to deployment in safety-critical autonomous
systems.
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