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1 Introduction

Artificial intelligence (Al) is having a transformative impact on dig-
ital medicine, particularly in clinical diagnostics and personalized
healthcare. Machine learning models, especially deep neural net-
works, are enhancing disease detection by analyzing medical im-
ages, electronic health records, and genomic data with unprecedented
precision. These advancements enable earlier and more accurate
identification of pathologies. Beyond diagnostics, Al-driven tools
are transforming personalized treatment plans and clinical decision-
making, demonstrating the technology’s potential to augment health-
care delivery.

Recognized as a pivotal enabling technology, Al holds immense
promise for addressing systemic societal challenges. This poten-
tial is formalized in the Artificial Intelligence for Social Impact
(AI4SI) [29] paradigm, which shifts focus from purely technical
innovation to context-aware, ethically grounded solutions. Aligned
with frameworks like the UN Sustainable Development Goals [22],
AI4SI emphasizes scalable interventions to improve quality of
life, particularly for marginalized populations. Within these high-
impact domains, public health stands out as both underexplored
and uniquely challenging. This research specifically focuses on
information-based behavioral interventions, i.e. campaigns that aim
to change health behaviors through peer influence and health com-
munication. Public health ecosystems have inherent uncertainties:
incomplete data, unpredictable environmental factors, and complex
socioeconomic determinants of health [24]. Recent policy develop-
ments [20] indicate growing recognition of AI’s potential to rev-
olutionize core public health functions. Building on this, this re-
search explores fundamental algorithmic challenges in applying on-
line learning to public health campaigns.

Many of these challenges can be formally framed as an influ-
ence maximization problem [14], where: (1) a social network rep-
resents relationships between individuals (nodes and edges), (2) se-
lected individuals act as seed nodes that initiate information spread,
(3) influence propagates according to probabilistic diffusion models
(e.g., Independent Cascade [14]), and (4) the objective is to select
a set of seeds that maximizes the expected spread of information.
While influence maximization has been extensively studied under
complete information assumptions, real-world applications require
online learning algorithms that can adapt to partial observability, dy-
namic network changes, and formal constraints.
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2 Research Directions

Applying Al to public health communication interventions reveals
critical gaps between algorithmic theory and real-world practice.
These gaps manifest as several key challenges. A primary concern is
partial observability: in on-site information campaigns [19, 36, 33,
35, 34, 37, 13, 16, 4, 30, 31], organizations rarely possess complete
data on the target population’s social network, making it difficult to
optimize intervention impact. Digital information campaigns [5, 12]
face similar constraints, as social media data (e.g., from X) may be
incomplete due to private profiles or offline interactions, rendering
network reconstruction unreliable. Another critical challenge is data
security and privacy [24]. Al applications in public health must nav-
igate the risks of exposing sensitive information, particularly when
integrating data from multiple sources, which increases reidentifi-
cation risks. This challenge is further complicated by varying na-
tional privacy frameworks, as each country maintains its own reg-
ulations governing Al and health data usage [6], imposing addi-
tional constraints on data security measures and privacy protection
in intervention design. Beyond data limitations, adaptive interven-
tion strategies remain underdeveloped. While some algorithms ac-
count for non-participation in multi-round interventions [36, 33, 35],
few explicitly address the co-evolution of interventions and dynamic
population changes. Additionally, personalization efforts are un-
evenly applied. Although some health interventions leverage wear-
able data for tailored behavioral strategies [28, 8], health communi-
cation campaigns often fail to adapt messages to individual cogni-
tive preferences. As highlighted by Faus et al. [10], message effec-
tiveness depends on aligning content with recipients’ information-
processing styles (cf. the Elaboration Likelihood Model [25]), and
targeting individuals receptive to behavioral change (cf. the Health
Belief Model [3]). Deployability of public health campaigns is fur-
ther complicated by the need for credible peer influence. Campaign
success hinges on ambassadors embodying promoted behaviors [10],
yet this alignment is frequently overlooked. Finally, resource alloca-
tion must balance fairness (avoiding algorithmic biases) and justice
(equitable distribution across communities), a challenge underscored
in recent work [24, 7, 17]. The challenges outlined above highlight
the complex interplay between technical feasibility and real-world
deployability in Al-driven public health interventions. Current so-
Iutions often treat these challenges in isolation. A unified frame-
work is needed to address these interdependencies, particularly in
resource-constrained settings where suboptimal decisions may exac-
erbate health inequities.

This research proposal will explore several promising directions
for advancing Al in public health, as evidenced by the following re-



search questions:

RQ1. How can online learning algorithms effectively balance
exploration-exploitation tradeoffs for network structure learning in
partially observable influence maximization problems?

RQ2. How can online learning frameworks adapt to co-evolving
network-agent systems while maintaining privacy guarantees and in-
corporating real-time feedback for dynamic strategy optimization?
RQ3. How can fairness constraints and incentive-compatibility
mechanisms be formally integrated into online learning algorithms
for influence maximization?

3 Research Agenda

Motivating Example. To bridge the research objectives with
methodological development, I anchor this approach in a real-world
instance of preventive intervention, so that it is possible to rea-
son in concrete terms. In many countries, the public health land-
scape faces a critical challenge: efficiently delivering HIV preven-
tion services to marginalized groups, including migrants, people
who use drugs (PWUD), and LGBTQIA+ communities, despite lim-
ited resources and structural barriers. In Italy, programs like Fon-
dazione Villa Maraini’s integrated testing model [18] and ARCI-
GAY’s nationwide peer-led outreach [1] demonstrate the importance
of community-based strategies. Yet a persistent gap remains: identi-
fying the most effective peer educators or "seeds" within these popu-
lations to maximize health message diffusion. A drop-in center serv-
ing homeless youth in a major U.S. city mirrored this challenge, aim-
ing to face HIV transmission through peer-led awareness campaigns.
They proposed an algorithmic solution to identify the optimal peer
leader, which was really deployed and faced real-world constraints,
such as peer leader absenteeism and unknown influence probabili-
ties. Several methods were designed to address this problem. Among
them, Wilder et al. [35] proposed the CHANGE agent, addressing
this problem by combining network sampling, adaptive planning, and
robust optimization. This method was tested in a pilot field study and
proved to be effective in both peer leader selection and the reduc-
tion of data collection costs. Furthermore, it’s worth mentioning this
work, also because it provides a comprehensive adaptive framework,
while later works mostly focused on improving the network explo-
ration task.

Methodological Components. The HIV prevention case serves as
a concrete testbed, with all algorithmic contributions designed for
broader applicability to influence maximization problems.

RQI1 will establish the foundational layer by advancing contextual
bandit theory for influence maximization in largely unknown social
networks. This research will frame the network exploration process
as a Contextual Multi-Armed Bandit (ConMAB) [27, 15], problem,
where queryable nodes are the "arms", the currently known subgraph
provides the "context", and newly discovered edges serve as the "re-
ward". Building on existing methods, this work will address a crit-
ical limitation of standard ConMABs in this setting: their tendency
to over-exploit well-explored network regions while neglecting other
potentially influential but less-known parts of the graph, a significant
issue in networks with sparsely connected communities. To over-
come this, this component will introduce an approach to dynamically
choose the exploration strategy based on previous feedback. This will
prevent local over-exploitation and maintain efficient global explo-
ration, shifting the objective from simply maximizing the size of the
discovered subgraph to identifying a more representative proxy net-
work for effective influence maximization. Furthermore, RQ1 will

extend its scope to more complex, partially observed scenarios char-
acterized by incomplete node metadata. To address this, the research
will incorporate a Generative Surrogate Model for metadata impu-
tation in active learning frameworks [2]. This model will leverage
the observed network topology and available node attributes to infer
probable feature vectors for nodes with missing data, thereby enrich-
ing the feature set and extending prior metadata-driven methods [30].
Another focus of this work will be the development of an online
framework capable of navigating the trade-off between network ex-
ploration and feature acquisition. This framework will dynamically
decide whether to expend its budget on querying nodes to uncover
topological structure or on acquiring missing metadata, optimizing
its strategy under explicit budget constraints.

RQ2 builds upon the network learning foundation from RQI to
develop comprehensive online learning frameworks that capture the
dynamic interplay between learning agents and evolving network
structures. This component integrates the exploration capabilities es-
tablished in RQ1 with real-time feedback mechanisms and cogni-
tive models such as the Elaboration Likelihood Model [25] to en-
hance both exploration efficiency and influence maximization effec-
tiveness. Privacy-preserving capabilities are achieved through Dif-
ferential Privacy mechanisms [9] integrated with Federated Learning
architectures [32], enabling distributed learning while maintaining
formal privacy guarantees.

RQ3 completes the unified framework by incorporating fairness
and incentive-compatibility constraints into the online learning algo-
rithms developed in RQ1 and RQ2. This component advances the-
oretical foundations of constrained online learning by developing
novel optimization techniques that maintain convergence guarantees
while satisfying fairness constraints [7] and incentive-compatibility
conditions derived from mechanism design theory [21]. The ap-
proach formalizes these constraints within the established online
learning framework, creating algorithms that provably balance effec-
tiveness with ethical considerations.

Ethical Considerations. Effective influence maximization algo-
rithms could be misused for social manipulation or misinformation
campaigns. Therefore, parallel research towards manipulation detec-
tion and countermeasures [11, 23, 26] is essential. However, such
concerns should not halt algorithmic progress when applied to eth-
ically sound public health interventions. This work will include ex-
plicit safeguards, restriction to verified public health contexts, trans-
parent disclosure to participants, and institutional ethical oversight.

4 Preliminary Results and Conclusions

Preliminary results for RQ1 demonstrate significant advances in
contextual bandits for network structure exploration. The proposed
framework introduces a novel two-level bandit architecture that
addresses fundamental exploration-exploitation challenges in par-
tially observable influence maximization. The lower layer imple-
ments a contextual bandit with specialized state representations,
while the upper meta-layer provides dynamic strategy selection be-
tween global and component-focused exploration. This hierarchical
approach shows balanced exploration while preventing local over-
exploitation. Empirical evaluation demonstrates significant perfor-
mance improvements over state-of-the-art methods across diverse
network topologies.

As far as conerns the scheduling, RQ1 was initiated during the first
year of the PhD program with these preliminary results and will be
completed during the second year alongside initiating work on RQ?2.
The third year will focus on RQ3’s constrained learning algorithms.
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