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Abstract. We consider the problem of learning heuristics for clas-
sical planning domains using Graph Neural Networks (GNNs). This
problem has been approached multiple times from different perspec-
tives and with varying results for classical planning. A key limitation
in this context is the expressivity of GNNs, which is restricted to the
C2 fragment of first-order logic (i.e., formulas with only two vari-
ables, possibly reused). This expressivity bound implies that GNNs
may not capture certain structural properties of more complex plan-
ning problems. We aim to extend the work of Ståhlberg et al. [9] to
better capture the structural complexity of planning domains.

1 Introduction

In recent years, different works have shown how deep learning ap-
proaches can be used to solve planning problems, either as heuristic
functions for classical planning, or applied in the context of general-
ized planning. For classical planning in particular, interesting results
have been shown by general policies approaches [9, 10, 11], which
use different types of graph neural network architectures to learn a
generalized policy for a classical planning domain, and by heuristic
approaches such as hypergraph networks [8] and relational heuristic
networks [7]. Graph Neural Networks (GNNs) in particular demon-
strated significant promise in learning heuristic functions and general
policies for classical planning problems. The work of Ståhlberg et al.
[10] extends GNNs for learning value functions in classical planning
scenarios, showcasing their ability to exploit relational structures in-
herent in planning states. However, a critical limitation when using
GNNs in this context is their expressivity, which has been shown to
be equivalent to the C2 fragment of first-order logic, that includes
formulas with at most two variables and counting quantifiers [1, 4].
This means that while GNNs can effectively capture local relational
patterns and simple object interactions, they struggle to represent
global structures or more complex dependencies that involve mul-
tiple objects and higher-order relations. To address this limitation,
we propose incorporating topological tools, such as simplicial neural
networks and persistent homology-based loss functions, that enable
the modeling of n-ary interactions and global structural constraints
in a more expressive way. These techniques allow us to go beyond
the C2 expressivity barrier, enriching the learning of heuristics and
generalized policies for classical planning. We explore these ideas in
more detail in Section 4.
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2 Background
Classical Planning. A classical planning problem is a tuple Π =
⟨s0, A,G, P ⟩ where P is the set of boolean variables (or fluents),
s0 is the initial state of the problem, A is a set of actions, and G is
the goal of the problem, which consists in a set of propositional goal
conditions. An action a ∈ A is a pair ⟨Pre(a), Eff(a)⟩, in which
Pre(a) represents the set of preconditions that must be verified in a
state s before executing the action, and Eff(a) represents the set of
effects of the action, that will be applied to the actual state to reach
the next state. A plan π = ⟨a1, ..., an⟩ is a sequence of actions,
and is considered a solution for the planning problem if applying
the sequence of actions, starting from the initial state of the problem,
leads to a final state in which all the goals of the problem are satisfied.

Graph Neural Networks. A Graph Neural Network (GNN) is a
type of neural network specifically designed to work with graph-
structured data. Traditional neural networks are designed to represent
data structured in grids or sequences, but they struggle in real-world
datasets structured as graphs, like social networks or molecular struc-
tures. GNNs operate on graph-structured data by iteratively updating
node embeddings through local message passing [5]. At each layer,
a node aggregates messages from its neighbors and updates its repre-
sentation. Despite their effectiveness, standard GNNs are limited to
patterns expressible in C2 [1, 4] logic, which hampers their perfor-
mance on planning domains requiring global reasoning.

GNNs for Classical Planning. A crucial design choice when ap-
plying GNNs to planning is the state encoding, that is, how to repre-
sent planning states as graphs for the network. The work by Horčik
et al. [6] offers a systematic comparative analysis of different state
encodings, evaluating their impact on heuristic learning for classical
planning tasks. They consider three main encoding schemes:

• Atom-based encoding: each grounded predicate (atom) is a node;
edges link atoms that share one or more objects. While this encod-
ing preserves logical information at the level of predicates, it can
result in large and sparse graphs.

• Object-based encoding: each object is a node, and edges are
added between objects that co-occur in the same atom. Unary
predicates become node labels. This encoding yields more com-
pact graphs and performs better in terms of evaluation speed and
coverage.

• Mixed (object-atom) encoding: both objects and atoms are
nodes; edges connect each object to the atoms it appears in. This
encoding captures full relational structure but can be redundant
and computationally heavier.



The empirical results provided show an improvement in coverages
with object-based encoding and also a reduction in the number of ex-
panded states and evaluation time compared to atom-based or object-
atom mixed encodings.

However, despite its practical advantages, the object-based encod-
ing suffers significantly from the expressivity limitations imposed
by the C2 fragment. Since each edge in the graph corresponds to a
binary co-occurrence of objects within a shared predicate, higher-
arity relations (e.g., ternary or quaternary atoms) are decomposed
into multiple pairwise interactions. This decomposition leads to a
loss of structural information: the network is no longer able to dis-
tinguish between genuinely ternary relations and sets of unrelated
binary ones. As a result, GNN architectures operating over object-
based encodings are inherently unable to represent or reason about
complex relational structures involving more than two objects.

Ståhlberg et al. [10] proposes an approach to overcome this limi-
tation. Specifically, they show that it is possible to extend the expres-
sivity of GNNs beyond C2 by enriching the input state representa-
tions with derived atoms, which encode higher-order relations such
as role compositions and transitive closures. These derived atoms act
as additional logical features that allow GNNs to handle structures
that cannot be directly represented within C2, enabling the learning
of general policies even in complex domains like Logistics. How-
ever, despite their utility, derived atoms alone are not sufficient to
fully capture the complete structural complexity of many planning
problems. The reliance on local relational patterns and limited vari-
able interactions means that certain global properties, such as com-
plex dependencies involving many objects simultaneously, may still
remain out of reach.

3 Topological Methods for Deep Learning

Topology provides a formal language for describing the global struc-
tural properties of data. In the context of machine learning, topo-
logical methods allow us to go beyond local, pairwise relationships
(as typically modeled by GNNs) and capture higher-order interac-
tions through constructions like simplicial complexes. A simplicial
complex generalizes a graph by modeling not just vertices and edges
(0- and 1-simplices), but also triangles (2-simplices), tetrahedra (3-
simplices), and higher-dimensional interactions.

In particular, simplicial homology gives us algebraic invariants,
such as connected components, cycles, and voids, that describe the
topological structure of a space. Persistent homology extends this by
analyzing how topological features evolve across scales in a filtra-
tion, yielding persistence diagrams or barcodes that summarize topo-
logical features with associated lifetimes.

Recent work, such as by Ebli et al. [2], has leveraged these ideas
to define Simplicial Neural Networks (SNNs). These networks gen-
eralize GNNs to simplicial complexes and allow for message passing
not only between nodes (0-simplices), but across higher-dimensional
simplices via coboundary and Laplacian operators. Convolutions
are defined spectrally using the eigenbasis of simplicial Laplacians,
yielding localized, degree-limited filters that can propagate higher-
order structural information.

Parallelly, Gabrielsson et al. [3] introduced a differentiable topol-
ogy layer based on persistent homology that can be embedded within
neural architectures. This layer can be used as a loss function or reg-
ularizer, allowing models to enforce topological priors or constraints,
e.g., promoting connected components or holes in outputs, or encour-
aging topological sparsity in parameter spaces.

4 Handling higher order relations with Topology
The expressivity of standard GNNs is limited to the C2 fragment of
first-order logic, meaning they can only capture patterns involving
up to two variables with counting quantifiers. This limitation pre-
vents GNNs from reasoning about many natural properties of plan-
ning problems, especially those that involve multiple objects or com-
plex dependencies. For instance, in domains like Logistics, achiev-
ing global goal satisfaction often requires recognizing interactions
among sets of objects, not just pairs.

Topology offers a promising solution to this challenge. Simplicial
complexes can naturally represent n-ary relationships and encode
structural features that go beyond the representational capacity of
GNNs. For example, a 2-simplex can represent a mutual interaction
between three objects, and the presence or absence of such higher-
order simplices provides critical relational context. A specific type of
neural networks, Simplicial Neural Networks(SNNs), are designed to
learn over these complexes by allowing message passing across sim-
plices of arbitrary dimensions, governed by the Hodge Laplacian.

The Laplacian encodes both upward and downward interactions,
thus capturing how lower- and higher-dimensional simplices influ-
ence each other. This mechanism enables SNNs to detect cycles,
voids, and other topological features that correlate with strategic sub-
structures in planning domains.

Moreover, topological loss functions based on persistent homol-
ogy, like those proposed in [3], can be used to explicitly enforce de-
sired structural properties in the learned representations or outputs.

Example 1. The Rovers domain requires coordinating rovers to nav-
igate, take images, and transmit data. It features two ternary rela-
tions, which are: (can_traverse r x y) and (have_image r o m),
the first encodes that a rover r can move between two waypoints x
and y, while the second states that the rover r can acquire an image
of objective o in mode m. In an object-based encoding, those two re-
lations are decomposed into pairwise link, e.g., (r, x), (r, y), (x, y),
but in doing so we lose the distinction between a true ternary rela-
tion and a collection of binary co-occurrences. In contrast, if we use
simplicial complexes to represent these atoms as 2-simplices, we can
preserve their higher-arity nature, allowing the network to reason
directly about the joint dependency between all the objects involved.

Key ideas for augmenting planning graphs with topology:

• Constructing simplicial complexes from sets of grounded predi-
cates,

• Applying persistent homology to analyze global relational pat-
terns,

• Using simplicial convolutional layers to propagate messages
across higher-order relations,

• Incorporating topological regularization to bias the learning pro-
cess toward structurally coherent heuristics or policies.

By leveraging these topological techniques, we can extend the rep-
resentational and reasoning capabilities of neural models in classical
planning, offering a principled path beyond the C2 expressivity bot-
tleneck.

5 Conclusion
We proposed a topological extension to graph-based heuristic learn-
ing for classical planning. Simplicial complexes, SNNs, and persis-
tent homology enable reasoning over higher-order structures, over-
coming GNN expressivity limits and opening new directions for neu-
ral planning systems.
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