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Abstract. Biomedical image analysis has traditionally relied on
grayscale or minimally processed RGB inputs for machine learning
(ML) and deep learning (DL) models. However, this assumption of-
ten overlooks the diagnostic significance embedded in color varia-
tions, which can carry critical structural and pathological informa-
tion. This work systematically investigates the role of color space
transformations, channel selection, and color-aware preprocessing
techniques—including local normalization, histogram matching, and
chromatic feature extraction—across multiple biomedical imaging
tasks.

Experiments span across seven distinct projects involving MR
brain imaging, retinal vessel segmentation, dermoscopic lesion clas-
sification, blood cell synthesis, and chemical solution analysis.
Findings reveal that selecting appropriate color spaces (e.g., HSV,
CIELAB, YUV) and channels (e.g., green from RGB, Y from YUV)
can significantly improve segmentation accuracy (up to +8% Dice),
classification recall (up to +0.38), and regression precision (R2 >
0.999). Further, integrating color histograms into GAN training im-
proves realism and performance in synthetic image generation.

This work provides empirical evidence that color is not merely
a visual aid but a quantifiable, discriminative feature that, when
modeled correctly, enhances ML/DL performance across biomedi-
cal imaging modalities. The study highlights the necessity of color-
aware design choices in future computer-aided diagnosis systems.

1 Introduction

Machine learning has become fundamental in biomedical imaging,
powering tools for segmentation, classification, and data augmen-
tation. Yet, many systems still default to grayscale or raw RGB
representations, often ignoring the rich diagnostic value inherent in
color cues. In various clinical contexts—such as retinal imaging, der-
moscopy, and histopathology—color can reflect physiological condi-
tions, disease progression, or imaging artifacts.

This work explores the hypothesis that informed use of color space

modeling and color analysis significantly improves ML and DL out-
comes. My research spans multiple imaging modalities and tasks,
linked by a unifying goal: to make color-aware design a core compo-
nent of biomedical image interpretation pipelines.
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2 Research Questions
Among others, I investigate the following key questions:

• RQ1: How do color space transformations (e.g., HSV, CIELAB,
YUV) impact segmentation and classification performance across
modalities?

• RQ2: Does domain-specific channel selection yield better perfor-
mance than standard RGB or grayscale approaches?

• RQ3: Can color-aware preprocessing (e.g., local normalization,
histogram matching) improve robustness under variable imaging
conditions?

• RQ4: Does incorporating color features into loss functions im-
prove GAN-based biomedical image synthesis?

3 Completed Contributions
My study draws from seven focused projects across different
biomedical imaging modalities. These are summarized visually in
Figure 1, which illustrates the dataset domains, tasks (segmenta-
tion, classification, regression, synthesis), and associated color-aware
techniques used.

3.1 Color-Aware Segmentation and Classification

In retinal vessel segmentation, the Y channel from YUV color
space achieved the highest average Dice score (0.879), outperform-
ing grayscale (0.835) and other channels such as G (RGB) and
L (HLS/CIELab). CLAHE-based contrast enhancement further im-
proved vessel visibility, and when paired with an attention-based U-
Net using a hybrid loss function, enabled high-precision segmenta-
tion suitable for clinical diagnostics. Similarly, in dermoscopic lesion
detection, using the R channel from RGB and S from HSV improved
recall by +0.38, highlighting the diagnostic value of chromatic fea-
tures.

3.2 Thresholding

In MR brain scans, I applied local normalization followed by adap-
tive thresholding (Sauvola, Otsu, Bernsen) for detecting white mat-
ter hypersensitivities. Results showed improved segmentation per-
formance, although parameter sensitivity across patients suggests a
need for adaptive tuning. On the other hand, channel-wise analysis



Figure 1. Schematic visual representation of the role of color analysis in biomedical image interpretation with the use of machine learning.

across 19 channels from six color models for retinal vessel extraction
revealed that the RGB-Green channel combined with the Moments
algorithm achieved the highest Dice (0.7840) and accuracy (0.9599),
with luminance-based channels consistently outperforming chromi-
nance ones. These unsupervised methods, enhanced by CLAHE and
TopHat preprocessing, offer efficient, training-free alternatives for
resource-limited settings.

3.3 Color Standardization for Regression

I proposed a histogram-matching algorithm for standardizing solu-
tion images used in vitamin C quantification. When integrated into
a regression pipeline, it produced neural network predictions with
R2 > 0.999, demonstrating that color consistency significantly en-
hances analytical accuracy.

3.4 GAN-Based Data Synthesis

A Mixture-of-Experts conditional GAN (MoE-cGAN) was devel-
oped to generate synthetic blood cell images. By incorporating red
and green histogram-based loss functions, the GAN improved image
realism and boosted downstream classification accuracy to 97%.

4 Novelty and Technical Insights
The novelty of this work lies in:

• Cross-domain chromatic benchmarking — systematic evalua-
tion across retinal, dermoscopic, chemical, and MR imaging tasks.

• Channel-aware deep learning — attention mechanisms and ar-
chitectural choices informed by color signal strength.

• Color-informed preprocessing — applying histogram normal-
ization and color-guided thresholding in clinical contexts.

• Color-guided loss functions — improving GAN performance
with chromatic consistency constraints.

These findings support the thesis that color is not a secondary vi-
sual cue, but a first-class feature for machine learning in biomedical
applications.

5 Future Work
I am currently exploring:

• Automated color space and channel selection using reinforcement
learning to optimize model inputs per task and modality.

• Color explainability studies to identify which chromatic features
models rely on most and how they correlate with known pathol-
ogy.

• How the combination of various channels from different color
space models can influence segmentation and classification out-
comes.

• Dynamic preprocessing pipelines that adapt contrast enhancement
and normalization strategies based on input color distribution.

6 Conclusion
This work demonstrates that color modeling—when thoughtfully
integrated—enhances biomedical image analysis across tasks and
modalities. My multi-project approach shows that color-aware ma-
chine learning is not only viable but necessary for robust, generaliz-
able, and clinically useful diagnostic tools.
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