
Toward Practical Constraint Acquisition: An Anytime
Learning Approach

Aicha BOUKHARI*

Université Paris-Saclay, CEA, List, Palaiseau, France
Université Paris-Saclay, LISN, Gif-sur-Yvette, France

Abstract. Constraint Acquisition (CA) is an interactive learning
framework where the goal is to infer a target concept, typically a set
of constraints, by interacting with a user through queries. Most ex-
isting CA approaches aim to converge to the exact target concept.
However, convergence in CA has been shown to be coNP-complete,
making it computationally hard and often impractical when time or
query budgets are limited. In my PhD research, I focus on anytime
Constraint Acquisition, a learning paradigm that relaxes the conver-
gence requirement and instead seeks to produce the best possible ap-
proximation of the target concept within a given resource budget —
e.g., time, number of queries. The key idea is to ensure that, even if
the acquisition process is interrupted prematurely, the returned hy-
pothesis remains as close as possible to the target. To this end, we
propose a novel query generation strategy, called �GEN, which pri-
oritizes queries based on a distance metric �, designed to accelerate
the inference of the target concept approximation. This strategy is
compatible with standard CA learners such as CONACQ and DCA.
We implemented it within DCA and evaluated its impact on a practi-
cal usecase: precondition inference for program verification. Prelim-
inary results show that �GEN significantly improves the quality of
learned concepts, generating up to three times more useful queries
compared to default heuristics. This suggests that �GEN offers a
promising path for scalable and robust CA in real-world applications
where convergence is often out of reach.

1 Introduction

Many CA methods have been proposed in the literature to assist users
in modeling problems using a constraint language. These methods
rely on queries classified by the user or an oracle to guide the ac-
quisition process. In active learning CA, queries are automatically
generated by the algorithm itself. In this work, we focus exclusively
on active learning methods that use membership queries. Specifi-
cally, we consider CONACQ [2] for learning concepts representable
as a conjunction of constraints from a given constraint language,
and DCA [6] for concepts expressible as a disjunction of such con-
straints.

Problem. Despite significant progress, CA still struggles with
complex problems. My PhD work focuses on improving CA for
broader domains like program analysis, specifically precondition in-
ference [5, 6], where accurate and timely models are key. Indeed, in
hard cases, CONACQ and DCA often fail to converge due to time or

⇤ Email: aicha.boukhari@cea.fr

query budgets. Still, in some contexts like program analysis, conver-
gence is not mandatory, and extracting the Maximally Specific con-
cept (MS) after some iterations is acceptable. Unfortunately, even
here, the extracted concept tends to lack precision. Indeed, current
CA methods do not generate enough informative positive queries
(i.e., set of solutions), which is essential for learning precise MS.

Contribution. This paper makes the following contributions:

1. We propose �GEN, the first extension in CA to improve MS under
a time budget constraint, by guiding query generation over poten-
tial positive queries. �GEN is a new query generation method that
enables fast anytime constraint acquisition.

2. We instantiated �GEN within the DCA algorithm leading to
�DCAGEN. Section 5 evaluates �DCAGEN on precondition
inference problems. Results show that, thanks to our guidance,
�DCAGEN generates 5 times more positive queries than the
baseline, hence generating more precise MS.

2 Background

Constraint Acquisition (CA). Modeling combinatorial problems
can be challenging and requires a significant effort from users.
CA automates this process by learning a constrained-based model
through interactions with the user. It relies on a predefined bias,
which is a set of candidate constraints. The goal is to learn the target
concept, expressing it with constraints from the bias. Throughout the
inference CA refines the version space, which contains all concepts
consistent with the information obtained from the interactions with
the user. Initially, the version space is bounded by two extremes: the
Maximally General (MG) concept, which accepts all possible assign-
ments (i.e., MG = true), and the Maximally Specific (MS) concept,
which rejects all assignments (i.e., MS = false). The acquisition
process aims to generalize MS and specify MG until both boundaries
converge, resulting in the learned model. This refinement is guided
by interactions with a user (or an oracle), who is asked to classify
membership queries, i.e., a complete assignments to the variables. A
query is classified as positive if it satisfies the target concept, and neg-
ative otherwise. Based on these classifications, the learner updates
the version space by inferring which constraints in the bias belong
or not to the target concept. Especially, if a query is positive, MS is
generalized and MG is specified otherwise. The queries used are in-
formative, meaning that each one helps reduce the version space by
eliminating inconsistent concepts, i.e., those that contradict the user’s
answers.

CA for Precondition Inference. Given a function under analysis F ,
and a postcondition Q, the precondition inference problem aims to
infer a condition P on F inputs, called the precondition, ensuring
that the execution terminates, does not crash and returns an output
verifying the postcondition Q [3]. Recently, the PRECA framework
proposed to use CA to automatically infer preconditions [5, 6, 7].
It replaces the user by an oracle that executes the binary code of
the program under analysis — thus operating in an automated and
black-box manner. PRECA infers the weakest precondition (WP),
i.e., the most general one, accepting the most models. Interestingly,
when applied on precondition inference, the Most Specific concept
(MS) from CA algorithms corresponds to a correct precondition, i.e.,
one implying the WP. In program verification, recovering a precise
precondition is acceptable as the weakest precondition is often too
complex to infer or even to understand by a human-user.

3 Motivation
While CA made significant progress, convergence is still out-of-
reach on complex problems. For instance, over a benchmark gath-
ering functions from the libc, the mbedtls cryptographic library,
and the tinyUSB library, PRECA [5] timeouts for 16 / 70 func-
tions within a 1h time budget. Even worst, on some cases like the
mbedtls_md_hmac_starts function from the mbedtls cryptogra-
phy library, the extracted MS after 1h of acquisition equals false —
i.e., the worst possible precondition. This is due to the complete ab-
sence of positive queries during the acquisition.

To effectively generalize the Most Specific concept (MS), it is nec-
essary to maximize the number of positive queries generated. Indeed,
only positive queries help generalizing the MS.

Our proposal. In the following, we propose �GEN to quickly gen-
eralize the MS. It relies on the following intuition:

Intuition 1. The more two queries satisfy common constraints, the
more likely they will share the same classification.

The observation is supported by statistics collected on 40 precon-
dition inference problems where PRECA converges and could gener-
ate all the needed queries. The analysis shows that, on average, 84%
of the queries that share the maximum number of constraints with a
given positive query e are also classified as positive. Especially, over
the mbedtls_md_hmac_starts function, �GEN enables to gener-
ate 2194 positive queries.

4 �GEN approach
We propose a new query generation heuristic based on Intuition 1.
It aims to generate queries satisfying the maximum number of con-
straints in common with already generated positive queries. To do so,
we solve an optimization problem based on a dedicated metric �.

Definition 1 (the � metric). Given two membership queries e and

e0, and a bias B, we define �(e, e0) as the number of constraints in

B that are satisfied by one query and violated by the other :

�(e, e0) = |{c 2 B | (e |= c) , (e0 6|= c)}|

Given a set of already generated queries E and a positive query
e 2 E, the optimization problem consists in generating a new infor-
mative query e0 that minimizes �(e, e0). In practice, e0 is generated
through a maxsat formula that aims to maximize the number of con-
straints satisfied by e while ensuring the informativeness of e0.

Since we aim to generalize the MS, we need to minimize � with
respect to a positive query. Unfortunately, finding an initial positive
query automatically is a hard problem — e.g., PRECA often timeouts
after 1h without producing any positive query. Hence, we assume
the user can provide it as input for the algorithm. While it may be
a strong hypothesis in some contexts, in program analysis, this is a
legitimate assumption since developpers often provide such inputs
either in the documentation or unit tests.

Table 1. �DCAGEN against DCAGEN: number of positive queries out of
the total number of queries generated (TO=1h)

Task DCAGEN �DCAGEN

starts 144/1241 1105/1214
cbc 480/889 1545/1838
process 62/601 881/1326
finish 22/451 179/187
reset 59/1245 264/522
update 78/564 553/578
strtok_r 405/1452 607/2282
setup 1014/4797 4871/5176

5 Experimental Evaluation

Experimental setup. We evaluate �GEN in the context of DCA
acquisition, which was shown more efficient for precondition infer-
ence [6]. Still, in its basic shape DCA cannot generate MS con-
cepts. For fair comparison, we applied a simple extension of DCA
to generate MS, leading to DCAGEN. We then implemented our ap-
proach within DCAGEN, which we refer to as �DCAGEN. DCA-
GEN and �DCAGEN are written in Java and use SAT4J [1] as SAT
and MaxSAT solver, and Choco-solver [8] as CP solver. Evaluation
is performed on precondition inference tasks (functions from the libc
and mbedtls cryptography library [6]) where the original DCA fails
to converge within 1h.

Results. Table 1 compares the number of positive and total queries
generated by DCAGEN and �DCAGEN. For a timeout of 1h,
�DCAGEN significantly outperforms DCAGEN, generating on av-
erage five times more positive queries. Further analysis showed that
�DCAGEN consistently produces more positive queries for time
budgets � 15 mins. Still, for timeouts around 5 mins, there are cases
where DCAGEN generates more positive queries than �DCAGEN.

Conclusion. On complex tasks with enough time budgets, typically

more than 5 mins, �DCAGEN significantly outperforms DCAGEN.

6 Conclusion
I propose �GEN, a guided query generation based on distance be-
tween queries, that prioritizes the generation of positive queries. It
enables the acquisition to infer a precise enough concept at anytime.
The results are encouraging, �GEN generating 5 times more posi-
tive queries than the state-of-the-art. As future work, we plan to ex-
tend the evaluation of �GEN. Especially, even if our approach sig-
nificantly improves positive query generation, it remains difficult to
compare the precision of the resulting concepts. Indeed, the queries
generated by �GEN and competitors differ significantly and logi-
cal implication does not occur. Hence, we plan to use model count-
ing techniques [4] to estimate the number of solutions in acquisition
results and better evaluate precision. We also plan to apply �GEN
within the CONACQ algorithm.

References
[1] D. L. Berre and A. Parrain. The sat4j library, release 2.2. J. Satisf.

Boolean Model. Comput., 7(2-3):59–6, 2010. doi: 10.3233/SAT190075.
URL https://doi.org/10.3233/sat190075.

[2] C. Bessiere, F. Koriche, N. Lazaar, and B. O’Sullivan. Constraint acqui-
sition. Artif. Intell., 244:315–342, 2017. doi: 10.1016/J.ARTINT.2015.
08.001. URL https://doi.org/10.1016/j.artint.2015.08.001.

[3] C. A. R. Hoare. An axiomatic basis for computer programming. Com-

mun. ACM, 12(10):576–580, 1969. doi: 10.1145/363235.363259. URL
https://doi.org/10.1145/363235.363259.

[4] L. Luu, S. Shinde, P. Saxena, and B. Demsky. A model counter for con-
straints over unbounded strings. In M. F. P. O’Boyle and K. Pingali,
editors, ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 -

11, 2014, pages 565–576. ACM, 2014. doi: 10.1145/2594291.2594331.
URL https://doi.org/10.1145/2594291.2594331.

[5] G. Menguy, S. Bardin, N. Lazaar, and A. Gotlieb. Automated program
analysis: Revisiting precondition inference through constraint acquisi-
tion. In L. D. Raedt, editor, Proceedings of the Thirty-First International

Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria,

23-29 July 2022, pages 1873–1879. ijcai.org, 2022. doi: 10.24963/IJCAI.
2022/260. URL https://doi.org/10.24963/ijcai.2022/260.

[6] G. Menguy, S. Bardin, N. Lazaar, and A. Gotlieb. Active disjunctive
constraint acquisition. In P. Marquis, T. C. Son, and G. Kern-Isberner,
editors, Proceedings of the 20th International Conference on Principles

of Knowledge Representation and Reasoning, KR 2023, Rhodes, Greece,

September 2-8, 2023, pages 512–520, 2023. doi: 10.24963/KR.2023/50.
URL https://doi.org/10.24963/kr.2023/50.

[7] G. Menguy, S. Bardin, A. Gotlieb, and N. Lazaar. A query-based
constraint acquisition approach for enhanced precision in program pre-
condition inference. J. Artif. Intell. Res., 82:901–936, 2025. doi:
10.1613/JAIR.1.16206. URL https://doi.org/10.1613/jair.1.16206.

[8] C. Prud’homme and J. Fages. Choco-solver: A java library for constraint
programming. J. Open Source Softw., 7(78):4708, 2022. doi: 10.21105/
JOSS.04708. URL https://doi.org/10.21105/joss.04708.

