
Empirical Study on the Energy Efficiency of Transfer
Learning Techniques for Text-to-Text Generation

Ainhoa Vivel-Couso

Second year PhD student at Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS)
Department of Electronics and Computing, University of Santiago de Compostela, Spain

Supervised by Jose Mª Alonso Moral and Alberto Bugarín-Diz
ORCID (Ainhoa Vivel-Couso): https://orcid.org/0000-0002-5860-4849

Abstract. This PhD project focuses on promoting environmental
sustainability in Natural Language Processing (NLP) by emphasising
the reuse, recycling, and reduction of pre-trained language models.
The main objectives are (i) to improve existing multilingual mod-
els through efficient adaptation methods for new domains, genres,
and languages; (ii) to investigate approaches for adapting language
models that minimize their carbon footprint; and (iii) to develop a
systematic experimentation framework that includes baseline defini-
tion, alternative model creation, text generation, and comprehensive
evaluation to balance energy consumption with the quality of gener-
ated text and to identify optimal models. This work underscores the
importance of environmental responsibility in NLP and includes a
case study on generating textual meteorological forecasts in Spanish,
Galician, and Basque.

1 Research problem and motivation

There exists an increasing trend in the scientific community in favour
of the idea that training Artificial Intelligence (AI) models should be
considered within the framework of the 17 Sustainable Development
Goals [26] due to its social, economic, and environmental implica-
tions, being the high demand of significant computational power and
energy resources one of the key elements of this impact [4].

Training large AI models can be expensive due to the requirement
for powerful hardware, specialised processors such as Graphics Pro-
cessor Units (GPUs), Tensor Processing Units (TPUs), and/or cloud
computing resources [23]. Techniques like transfer learning aim to
reduce the need for extensive training by leveraging pre-trained mod-
els on similar tasks. Ongoing research aims to develop techniques
that balance the need for accurate models with environmental and
economic considerations. Green AI initiatives specifically target the
creation of sustainable and eco-friendly AI technologies, addressing
the environmental impact of AI research and applications [22].

The primary goal of this work is to explore knowledge transfer
methods to reduce the environmental impact of AI model training.
To this end, a baseline model trained under traditional standards will
be established. Its performance will be compared to that of alter-
native models created using various knowledge transfer techniques
and less resource-intensive training methods. The study focuses on
sequence-to-sequence text generation models in Spanish, Galician,
and Basque, specifically adapting them to generate meteorological
narratives.

2 Related work

In spite of its importance, there are only a few recent publications
in the literature where the environmental impact of large language
models (LLMs) is analyzed [12, 21, 28]. The proposal in our re-
search presents a new approach to the problem, since it addresses the
comparison of knowledge transfer methods to reduce environmental
impact.

2.1 Natural Language Generation

Within the myriad of existing Natural Language (NLG) technologies
and models [7], we will focus on the use of pre-trained models [6, 27]
which can be fine-tuned [5] for specific tasks. Pre-trained models
have become popular in various domains due to their ability to cap-
ture and transfer knowledge from diverse datasets, improving effi-
ciency and performance for specific applications [24]. In this work,
we will use Sequence-to-Sequence (seq2seq) language models [16],
since this type of pre-trained Text-to-Text (T2T) systems have been
successfully reused to generate weather descriptions like the ones we
will consider as use case.

2.2 Transfer Learning

Transfer learning (TL) [25] is a machine learning (ML) technique
where a model trained on one task is adapted to another related task.
Thus, TL leverages the knowledge gained from solving a different
but related task. This approach is particularly useful when we have a
limited amount of labeled data for the target task, and it is especially
important to reduce the energy cost and carbon footprint.

TL is valuable in deep learning (DL), where models have many
layers and parameters. Popular pre-trained models, such as those
based on convolutional neural networks (CNNs) for image-related
tasks or models like BERT for NLP, have shown success in TL sce-
narios [15].

Fine-tuning (FT) is the process of making small adjustments to
achieve the desired output or performance [5]. In the context of DL,
FT involves the use of weights of a trained neural network to program
another DL algorithm from the same domain. Below, we go deeper
with those methods which are the most pertinent for the scope of this
work:
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• Zero-shot Learning (ZSL) is a setup in DL where, at test time,
a learner observes samples from classes which were not observed
during training [11, 14]. ZSL showcases the generalisation and
adaptability of pre-trained language models to a wide array of
NLP tasks. Nevertheless, even if ZSL offers significant advan-
tages, it may have limitations in cases where the task description
is ambiguous or the model’s pre-trained knowledge does not align
well with the target task.

• Few-shot Learning (FSL) is an ML method ready to exploit a
training dataset with limited information [2, 10]. FSL is an alter-
native approach to FT with very limited labelled data.

• Adapter-based Learning (ADT). The pre-trained model will not
be retrained. Instead, we will introduce an adapter module [18].
Parameter-Efficient Fine Tuning (PEFT) methods involve freezing
the pre-trained model parameters and introducing a small number
of trainable parameters, known as adapters, on top of it. These
adapters are trained to capture task-specific information. We used
Low Rank Adapters [8] (LoRA), a technique that accelerates train-
ing of large models while consuming less memory.

2.3 Metrics for Text Evaluation

There are numerous metrics for evaluating the quality of language
models [3, 13]. The choice of metrics depends on the specific task
or goal since different metrics capture various aspects of text qual-
ity. Text evaluation metrics can be categorised into human evalua-
tion [20], which entails the application of human judgment to subjec-
tively assess various aspects of the text quality (e.g., fluency, coher-
ence, relevance, or overall quality), and automatic evaluation metrics,
which employ computational methods to assess the quality of gener-
ated text versus reference or target text.

On the one hand, Perplexity [1] is not commonly used to eval-
uate seq2seq models like mT5 (Multilingual Translation Trans-
former) [29], where the task involves transforming an input sequence
into an output sequence. On the other hand, metrics such as BLEU
(Bilingual Evaluation Understudy) [17] or ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) [9] are the most used despite the
ongoing debate about their adequacy for NLG tasks [19].

3 Contributions

As I am currently in the second year of this PhD, I am still in the
early stages of my research. Nevertheless, several contributions have
already been achieved, laying the foundation for subsequent work.

Our current project is a continuation of my master’s thesis. This
research is being developed in collaboration with HiTZ1, the Basque
Centre for Language Technologies, which brings expertise in multi-
lingual NLP, speech processing, and language resources, which com-
plements my focus on sustainable AI. Through this collaboration, we
aim to create more efficient and eco-friendly language models. To-
gether, we plan to develop robust adaptation methods and evaluation
frameworks that address both performance and environmental im-
pact.

We are now working on developing and validating the necessary
tools to pave the way for Responsible NLP technology. A central
contribution of this work is the definition of a dynamic experimental
cycle that iteratively covers research, design, development, valida-
tion and optimisation. This framework has already guided the con-
struction of a baseline and subsequent transfer learning models. To

1 https://www.hitz.eus/

ensure flexibility, it has been designed to work with different models
and datasets while remaining easy to configure. The framework cre-
ated implements the experimental process comprising the following
stages:

• Standby Power Measurement. This involves quantifying the en-
ergy consumption of the GPUs when no processes are running.
This measurement is expressed in watts-hour.

• Data Preprocessing. It is done to generate the datasets used for
defining the Baseline and training the models.

• Baseline Definition. The training involves establishing a reference
model to serve as a baseline. This model will undergo traditional
and resource-intensive training.

• Knowledge Transfer. The generation process involves creating al-
ternative language models through less resource-intensive train-
ing, employing diverse knowledge transfer techniques.

• Automatic Text Generation. Automatically generating narratives
from test data for each trained model, including the Baseline.

• Evaluation. Evaluating texts generated by all models, including
the Baseline, using automatic metrics.

We conducted preliminary experiments to evaluate the framework.
A baseline and several alternative models were defined, and the re-
sults are presented in Table 1.

TL technique TData Epochs TTime TLoss EEC
ZSL (mT5-base) - - 0 - 0

FT (Baseline) ES 300 12025 0.118 1690
FSL ES 5 84 1.973 10
FSL ES 25 396 0.938 56
FT ES 5 200 1.699 28
FT ES 25 994 0.843 139

FSL GL 5 99 4.365 12
FSL GL 25 473 1.169 66
FT GL 5 221 1.813 31
FT GL 25 1103 0.972 154

FSL ES-GL 5 175 2.227 24
FSL ES-GL 25 866 0.865 121
FT ES-GL 5 404 1.578 56
FT ES-GL 25 2013 0.744 285

Table 1. Training Time in seconds (TTime), Training loss (TLoss), and Es-
timated Energy Consumption (EEC) in watts-hour (Wh) of each model re-
sulting from training mT5-base with different TL techniques.

4 Conclusions and Future Work
For now, we have focused on meteorological data. Our observations
indicate that: (i) refined language models for Spanish and Galician
demonstrate adaptability to a new domain through efficient TL tech-
niques; (ii) exploring strategies to minimize the carbon footprint in
model adaptation supports a commitment to environmentally con-
scious practices in NLP; and (iii) the pipeline developed for system-
atic experimentation has proven effective in defining baselines, cre-
ating alternative models, generating text, and conducting a thorough
evaluation, including metrics for energy consumption and text qual-
ity. Overall, applying knowledge TL techniques enables the creation
of low-cost language models that equal or surpass the performance
of the baseline model.

For future work, we plan to conduct a more detailed comparison
that incorporates a wider range of automatic evaluation metrics, al-
lowing for a comprehensive assessment of model output. We also aim
to perform human evaluation, providing a more nuanced perspective
on model effectiveness. In addition, we intend to foster ongoing im-
provement and innovation toward refining language models for sus-
tainable and effective NLP applications.
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