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Abstract. Constraint Acquisition (CA) is a learning-based ap-
proach that aims to automate the construction of constraint models
by interacting with a user or an oracle. Traditionally, CA assumes a
minimally informative oracle that can only classify simple examples
as valid or invalid. This limited feedback often results in long ac-
quisition processes, especially for complex concepts. In my PhD re-
search, I explore how relaxing the assumptions about the oracle can
lead to more efficient acquisition. By considering oracles capable of
providing richer answers—beyond mere classification—we can de-
sign more expressive queries and significantly accelerate learning. I
propose a new class of queries that, given an example, requests both
its classification and an explanation justifying that classification. This
allows the learner to extract more information from each interaction,
especially in domains with large or structured hypothesis spaces. I
formalize the assumptions required on the oracle to support these
queries and analyze their theoretical and practical impact on learning
efficiency. My objective is to demonstrate how my approach can be
applied to the problem of precondition inference in program verifica-
tion, where the verification engine acts as a powerful oracle capable
of providing informative feedback.

1 Introduction

Over the past decades, constraint programming has made significant
progress in modeling and solving combinatorial problems. However,
building the corresponding model for a given problem often remains
challenging and typically requires expert insight. To address this, ac-
tive CA emerged as a method to automate the modeling process. A
learner generates queries—instantiations of problem variables—and
the user classifies each as a solution or non-solution to the target
concept i.e., the concept we want to learn. Numerous CA approaches
have been proposed over the years, including the use of member-
ship queries [7], partial queries [4], generalization queries [5], rec-
ommendation queries [8], an argument-based approach [13], agent-
based matchmaking to identify user preferences [9]. Some require
greater effort from the user to answer, aiming to reduce the num-
ber of user-learner interactions without overburdening the user. In
my PhD work, I explore how to enhance the scalability of constraint
acquisition (CA) in fully automated contexts, with a focus on pre-
condition inference. The recent PRECA framework [11, 12] applied
CA [7] to this task by replacing the user with an automated oracle,
which demonstrates that delegating the query classification task to an
oracle can be highly effective, as it can classify thousands of queries
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in seconds, enabling faster interaction. However, despite the PRECA
oracle’s efficiency, the query generation process remains a bottleneck
that limits the number of queries processed in practice, thus impact-
ing scalability. As part of my research, I investigate richer oracle in-
teractions in CA by introducing new query types that better exploit
the oracle’s capabilities and reduce the number of queries that need to
be generated. In line with previous CA work [5, 4, 8, 6, 2, 14, 9, 13],
I specifically aim to develop queries suited for fully automated envi-
ronments, as it is still unclear how existing query types can be effec-
tively used with a fully automated oracle.

Contribution. In this paper we propose the following contributions:

e We introduce a new type of queries explanatory query that re-
quires the oracle to provide both a classification (yes/no) and an
explanation justifying that classification.

e We propose XCONACQ, an extension to the state-of-the-art CA
algorithm CONACQ leveraging our new explanatory queries.

e We show how to apply XCONACQ for precondition inference, us-
ing path predicates to efficiently answer explanatory queries.

2 Background

We now present the necessary background on CA and how it can be
used for precondition inference.

Constraint acquisition can be viewed as an interaction between user
and learner. As input, the learner is given a bias B, which consists of
a collection of constraints over the problem variables X . The goal
is for the learning process to output a subset of constraints, called a
constraint network, that exactly models the target concept 1. They
represent the constraints that must be satisfied for a given CSP. To
do so, the learner generates membership queries [1] — complete as-
signments of the variables X over their respective domains D — and
asks the user to label them as either solutions (yes) or non-solutions
(no) of T'. Based on the user’s answer, the learner filters accordingly
the candidate space —i.e., the set of all possible constraint networks
that can be constructed from the bias—. The acquisition process ends
when no other informative query can be generated. By informative
query, we refer to a query that filters out concepts from the candi-
date space regardless of their classification (yes/no). Various other
types of queries have been used in CA over the past years [7, 4, 5, 8].
They are usually designed to minimize effort for both the user and the
learner, but mostly prioritize the user, who often has limited knowl-
edge.



Precondition inference using CA. Recent work [11, 12] adapted
CA for precondition inference which refers to identifying the condi-
tions P on a function’s inputs for it to successfully execute and sat-
isfy a given postcondition () [10]. It led to a new framework, dubbed
PRECA, where the user is replaced by an oracle that executes the
learner’s queries — now interpreted as inputs to the function under
analysis. The oracle runs the test case and returns yes if it terminates,
does not crash, and satisfies the postcondition Q; no if it crashes, or
terminates but does not satisty @); and ukn for unknown if the execu-
tion does not terminate given a timeout. At the end of the process, the
learner will return the concept as a set of constraints that represent
the precondition. PRECA considers only membership queries as it
remains unclear how to automate an oracle for the other query types
previously discussed.

3 Motivation

Membership-based CA techniques have been used for precondition
inference. However, in some cases, the learning process takes too
long to reach convergence and ultimately timeouts. This is due to the
size of the bias, which becomes too large to be handled efficiently.
Interestingly, our experiments show that, in these cases, the precon-
dition can often be expressed using only 7% of the bias. This obser-
vation highlights the importance of efficiently filtering out irrelevant
constraints, especially as the candidate space expands with the bias,
since it represent all possible constraint networks that can be con-
structed from it. We propose leveraging the automated oracle’s abil-
ity to answer more complex queries than simple membership ones,
without affecting response time, and designing query types that ex-
ploit this capability to improve acquisition scalability.

4 Acquisition with Explanatory Queries

We define explanatory queries and show how they can be used in CA.

Definition 1 (Explanatory Query). An explanatory query is a com-
plete assignment e over X submitted to the oracle. In addition to
answering whether e satisfies the target concept (yes or no), the ora-
cle also returns a (not necessarily minimal) set of constraints I that
explains the classification: We note sol(I) and sol(T) the sets of
solutions corresponding to each constraint set, respectively.

o [fthe answer is yes, I contains sufficient constraints to justify why
e satisfies the target concept, i.e., e € sol(I) C sol(T);

o [fthe answer is no, I contains sufficient constraints to justify why
e violate the target concept, i.e., e € sol(I) C sol(—T).

Explanatory queries offer guidance to the learner by narrowing
down the search space. The main difference from [13] is that their
argumentation queries are used in a passive learning setting (queries
are given as input and not generated by the learner), and while argu-
mentation queries must belong to the bias B, explanatory queries are
not subject to this restriction.

Explanatory queries for CONACQ. We extend the CONACQ al-
gorithm [7] to handle explanatory queries, which we refer to as
XCONACQ. The core idea is retained, but the candidate space is up-
dated not with membership queries, but directly from a query’s ex-
planation I. We define a new approach for processing positive and
negative explanations. Since we now deal with a set of solutions
rather than one, concepts that fail to classify all solutions in [ are
filtered out. As the candidate space is updated differently depending

on the classification, we define how each case should be processed.
We respectively note I and I~ positive and negative explanatory
query results. They are handled as follows:

e Positive Explanation. In classical CA methods, constraints vio-
lating a positively classified query are discarded, as they cannot
be part of the final concept—otherwise, the concept would incor-
rectly reject a positively labeled example. Similarly, for a posi-
tively answered explanation query, we remove any constraint that
violates any solution in the provided explanation I, since we
know that all its solutions are classified as positive ones. The dis-
carded constraints can be computed as follows:

K(IY) ={ce B|sol(I"U=c) # o}

e Negative Explanation. For Negative explanation, we ensure that
for each class of query — i.e., queries violating same constraints
— covered by I, at least one constraint violating all such classes
is included in the target concept. Updating the concept space
requires extracting these classes from /= which is non-trivial.
Therefore, we define a Randomized strategy to build such a set.
The goal is to extract as many class of queries as possible from
the explanation by generating a fixed number of solutions and, for
each solution, using its set of violated constraints to update the
candidate space. This optimistic strategy aims to obtain as many
informative queries as possible from /~. We note that some of
them may not be extracted from the explanation, and queries shar-
ing the same violated constraints may be generated. While it pre-
serves the correctness of the acquisition, it remains non-optimal.

5 Explanatory Queries for Precondition inference

We now describe how XCONACQ can be adapted for precondition
inference. We use the path predicate associated with a given explana-
tory query as an explanation.

Definition 2 (Path predicate). Given an execution path in a software,
its path predicate 7 is a set of constraints on the software inputs
necessary and sufficient to follow the exact same execution path.

Given a full inputs assignment e, the path predicate 7 can be con-
structed by gathering all the branch conditions taken during the ex-
ecution of the program on e. It will include all satisfied constraints
from conditionals (if and loop conditions) and conditions associated
with error handling (e.g., division-by-zero, null pointer dereference).
Hence, every solution in 7 share the same classification. The extrac-
tion of path predicate is a common task in program analysis and can
be done efficiently [3]. Once extracted by the oracle, the execution
path is provided to XCONACQ as the explanation.

6 Conclusion

We propose a new type of queries that extract a maximum of infor-
mation from the user during the CA process. This approach is partic-
ularly interesting for applications where we have a powerful oracle
rather than a user whose effort needs to be minimized. We define and
show how to include this new type of queries in CONACQ, leading to
XCONACQ, and explain how it can be instantiated for code analysis
to find a function’s precondition.

For future work, we aim to evaluate our method, compare it to the
state of the art, and explore various strategies to extract information
from negative explanations or having the oracle perform symbolic
execution [3] based on execution paths to produce more general ex-
planations for each query.
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