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Abstract. Large Language Models (LLMs) present significant po-
tential for enhancing decision support in business-critical contexts,
while simultaneously posing challenges related to transparency and
reliability. Addressing these concerns, in my research I am inves-
tigating interpretable and human-in-the-loop frameworks that inte-
grate automated recommendations with natural language justifica-
tions. Contributions include the development of interpretable LLM-
based systems, alongside novel contrastive explanation techniques
for ranking-based decision processes to be applied in corporate en-
vironment. Future directions involve advancing mechanistic inter-
pretability, implementing guardrails against adversarial attacks, and
broadening the application of LLMs across organizational functions,
with the aim of fostering transparent and regulation-compliant Al
systems.

1 Introduction

The recent surge in the deployment of LLMs across a variety of ap-
plications has brought remarkable advances in natural language pro-
cessing and automated decision-making [9]. However, as these mod-
els increasingly permeate high-stake corporate environments—such
as human resources and talent acquisition—the need for transparency
and accountability becomes paramount [19]. In such sensitive do-
mains, where algorithmic decisions can significantly impact individ-
uals’ careers and organizations’ long-term strategies [7], the integra-
tion of eXplainable Artificial Intelligence (XAI) and interpretability
techniques is no longer optional but essential.

My research activity investigates the integration of LLMs into
decision-making workflows across a variety of business domains,
where their capacity to process and generate human-like language
presents new opportunities for the development of intelligent sup-
port systems [20]. The study focuses on understanding how LLMs
can be effectively embedded within organizational pipelines to im-
prove decision quality, while ensuring alignment with interpretable
and explainable frameworks that meet both regulatory requirements
and the needs of end-users. From this perspective, my research con-
tributes to a more comprehensive understanding of LLMs not merely
as linguistic technologies, but as strategic assets in the design and im-
plementation of contemporary business decision-making processes.

2 Research Questions

While LLMs exhibit impressive performance across a wide range
of task types [4], their integration into decision-support pipelines

introduces significant challenges, particularly with respect to trust-
worthiness, usability, and alignment with human values [10]. Fur-
thermore, the regulatory landscape surrounding these technologies
is becoming increasingly stringent, often mandating the incorpora-
tion of human-in-the-loop mechanisms to ensure oversight [14] and
guardrails strategies to prevent adversarial attacks [8].

To address these concerns, my research studies focus on the fol-
lowing central questions:

1. How can natural language explanations generated by LLMs en-
hance trust and stakeholder understanding in decision-support sys-
tems deployed in business-critical domains?

2. What design principles enable the effective integration of lan-

guage models with interpretability techniques to deliver reliable
decision-making tools?

3. How can human-in-the-loop methodologies and appropriate eval-

uation metrics be employed to assess the quality, consistency, and
domain alignment of automated recommendation systems?

Through addressing these research questions, the goal of my stud-
ies is to contribute to the growing body of literature at the intersec-
tion of LLM deployment, interpretability, and augmented decision-
making, while grounding the investigation in applied, real-world cor-
porate settings.

3 Contributions

In response to theses proposed research questions, my studies to
date have produced a set of methodological and applied contributions
across three main axes.

LLM Framework for Transparent Recruitment In collaboration
with a major European banking institution—where I serve as a Se-
nior Data Scientist—I designed and empirically validated an opera-
tional framework for Al-assisted résumé evaluation [13]. The system
integrates quantitative candidate profiling with natural language ex-
planations generated by LLMs, offering recruiters fine-grained, in-
terpretable assessments of candidates’ curricula vitae. This approach
is explicitly designed to enhance transparency and support regula-
tory compliance, particularly in alignment with the provisions of the
latest European AI Act [5]. Importantly, the role of LLMs in this
framework is not to replace human resource professionals, but rather
to augment decision-making by supporting recruiters with evidence-
based guidance and structured inputs for candidate interviews. A
human-in-the-loop protocol is implemented, allowing recruiters to



review and provide feedback on both the LLM-generated scores and
explanations, while ultimately retaining control over the evaluation
and selection process. The evaluative framework includes stability
testing for the generated explanations and incorporates a structured
validation methodology to assess the alignment of LLM outputs with
expert-defined gold standards. Additionally, the model’s ability to ex-
tract relevant and factually accurate information from résumés is as-
sessed. This work makes a concrete contribution to the development
of explainability-aware Al systems tailored to high-risk domains,
such as hiring, where trust, interpretability, and regulatory account-
ability are paramount.

XAI to Support Decision-Making in Corporate Banking Ex-
panding upon the need for stakeholder-aligned explainability, I ex-
tended the application of LLMs to generate business-relevant justifi-
cations for Al-driven recommendations in the corporate banking sec-
tor [3]. Specifically, this study focused on supporting sales personnel
by not only providing propensity-to-buy scores, but also delivering
natural language explanations that articulate the underlying rationale
behind each recommendation. The proposed methodology involves
clustering input features based on their business semantics and lever-
aging LLMs to translate their associated SHAP values into coherent,
human-readable narratives. The resulting explanations were bench-
marked against expert-generated justifications, demonstrating both
alignment with domain expectations and measurable improvements
in operational efficiency. This approach enabled the deployment of a
system capable of generating tailored textual justifications for non-
technical end-users, such as relationship managers. As a result, the
system facilitates scalable, intelligible, and contextually meaning-
ful communication of model outputs, thereby enhancing the trans-
parency and usability of Al recommendations in commercial banking
workflows.

Contrastive Explanation Techniques for Ranking Systems To
enhance the interpretability of ranking-based decision-making sys-
tems, I introduced the concept of Evaluative Item-Contrastive Expla-
nations as a novel form of contrastive reasoning [2]. This approach is
based on the pairwise comparison of items ranked by an Al model,
whereby a comprehensive evaluative assessment is conducted for
each item in the pair. Specifically, the method generates natural lan-
guage representations that articulate the strengths and weaknesses of
both the preferred and the non-selected item, thereby providing users
with a nuanced understanding of the rationale behind the ranking
outcome. Grounded in the principles of Evaluative AI [12], this tech-
nique does not merely justify the selection of the top-ranked candi-
date but also highlights the distinguishing characteristics of alterna-
tives, fostering a more transparent and accountable decision-making
process. The method holds particular promise for high-stakes do-
mains such as recruitment, where fairness and clarity are critical,
as well as for resource-constrained environments that demand op-
timized decisions under strict budgetary limitations.

Collectively, these contributions advance the state of the art in
decision-making and XAI by demonstrating how interpretability
techniques—particularly in conjunction with LLMs—can be mean-
ingfully applied and evaluated in real-world environments. The re-
search highlights both technical innovations and socio-technical im-
plications, laying the foundation for future inquiry into trustworthy
and human-aligned Al systems.

4 Future Research

Building upon the foundational contributions outlined above, future
research will pursue three intertwined directions: (i) deepening the
interpretability of LLM-based systems through both user-centric and
mechanistic perspectives, (ii) developing robust guardrails to miti-
gate adversarial attacks against such systems, and (iii) advancing the
integration of language models into decision-making pipelines across
business domains.

First, on the interpretability front, while prior efforts have empha-
sized natural language explanations and human-aligned justification
strategies, future work will investigate the internal representations
and reasoning processes of LLMs themselves [11]. Drawing inspi-
ration from recent advances in mechanistic interpretability [18], my
research will explore how internal attention patterns, neuron activa-
tions, and intermediate representations can be probed to reveal the
computational substrates of decisions made by LLMs. The goal is to
bridge the gap between surface-level explainability (what the model
says) and structural transparency (how the model reasons), thereby
contributing to a more principled understanding of LLM behavior in
complex decision contexts.

Second, as these LLM-based systems are increasingly integrated
into high-stakes corporate environments, they become potential tar-
gets for manipulation, data poisoning, or prompt-based exploits that
can compromise both reliability and trust [8]. By designing effec-
tive guardrailing mechanisms, my goal is to ensure that automated
recommendations remain aligned with organizational objectives, re-
silient under adversarial conditions, and compliant with regulatory
and ethical standards [16].

Finally, from an application-driven standpoint, future work will
focus on extending LLM-based decision-support frameworks to ad-
ditional high-impact business functions, such as performance evalua-
tion and client risk assessment. Particular attention will be paid to the
longitudinal impact of Al-generated explanations on organizational
processes, decision quality, and stakeholder trust [1], with an empha-
sis on designing adaptive systems that evolve with business rules and
user feedback [15].

Additionally, future research could address the development of
evaluation protocols that jointly assess explanation quality and fac-
tual accuracy [21], along with the alignment with expert judgment
[17]. These metrics could be validated not only via human-in-the-
loop processes but also through the use of synthetic benchmarks and
automated auditing tools [6], with the aim of supporting scalable de-
ployment in regulated environments.
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