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Abstract. Black-box optimization (BBO) deals with optimizing
functions that are expensive to evaluate, lack closed-form expres-
sions, or are defined implicitly through complex simulators. Evo-
lutionary algorithms, particularly the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES), have become a standard tool in
this field due to their robustness and gradient-free nature. Despite
their flexibility, evolutionary methods are often sample-inefficient.
To address this, surrogate-assisted optimization introduces predic-
tive models that approximate the objective function to guide the
search. Recent advances in deep learning, particularly transformers
and transfer learning, offer new avenues to improve surrogate model-
ing. This starting research explores how modern deep architectures,
enhanced by prior knowledge from related tasks, can improve effi-
ciency and generalization in black-box optimization when combined
with state-of-the-art evolutionary algorithms.

1 Motivation and Research Questions

Black-box optimization plays a central role in many scientific and en-
gineering applications, ranging from hyperparameter tuning [7] and
reinforcement learning [23] to industrial design [3] and biological
systems [24]. Unlike standard optimization methods that rely on gra-
dient information or convexity assumptions, BBO methods are appli-
cable in situations with non-smooth, multimodal, or noisy objectives.

Among BBO techniques, CMA-ES [1, 8] stands out for its self-
adaptive search distribution and strong empirical performance across
benchmark functions and real-world problems [10]. However, such
methods often require a large number of objective function evalua-
tions.

That is why surrogate models are introduced to approximate the
objective function and guide the optimizer toward promising areas
of the search space. Historically, the first surrogate models used in
evolutionary optimization were low-order polynomials [9, 14, 27],
which offered a simple yet effective way to capture local structure.
These were later followed by more flexible models, including Gaus-
sian Processes (GPs) [22] and random forests [13], which are widely
used in Bayesian optimization due to their ability to model uncer-
tainty.

Recent research suggests that deep neural networks (DNNs), in-
cluding autoencoders [26], CNNs [16], and especially transform-
ers [19, 25], could outperform classical surrogate models in high-
dimensional and structured domains. Furthermore, transfer learning
[20, 30] has shown promise in leveraging prior knowledge to accel-
erate convergence in related optimization tasks.

While transfer learning has become a well-established concept in
many areas of machine learning, its application to surrogate model-

ing for black-box optimization remains relatively rare. To date, only
a few recent works have directly addressed this intersection. For in-
stance, Hu et al. [12] proposed a method for transferring the param-
eters of Gaussian Process (GP) surrogate models when the training
data distributions of a source and target task are sufficiently similar,
as measured by the Wasserstein distance. Their framework dynam-
ically decides whether to apply transfer or to re-estimate the surro-
gate via maximum likelihood, and they suggest its use in surrogate-
assisted evolutionary optimization, where earlier generations can act
as knowledge sources.

In contrast, Chen et al. [5] consider a more elaborate transfer
mechanism in GP modeling, one that incorporates the distance of
the predicted optimum to the target data and the prediction error of
the source model. However, their method requires user selection of
the source and is not specifically aimed at evolutionary optimization.

Since GPs are a central model in both surrogate-assisted and
Bayesian optimization, these studies represent an emerging bridge
between the two areas. Indeed, there has been growing interest in
knowledge transfer within Bayesian optimization itself, as seen in
works such as [17, 18, 28].

Building on this state of the art, my research investigates the fol-
lowing questions:

e How can modern deep architectures, such as transformers and
ConvNets, enhance the expressiveness and generalization of sur-
rogate models in BBO?

e In what ways can transfer learning be leveraged to reuse knowl-
edge across optimization tasks and reduce sample complexity?

e How can these models be integrated with adaptive evolutionary
strategies such as CMA-ES in a principled, data-efficient manner?

2 Research Approach and Methodology

The proposed research explores the intersection of evolutionary op-
timization, deep learning, and transfer learning. The core idea is to
augment evolutionary search—especially CMA-ES—with deep sur-
rogate models that are either pretrained on similar tasks or dynami-
cally adapted using transfer learning techniques. This allows the op-
timizer to benefit from prior experience, improving convergence in
domains where each function evaluation is costly.

Inspired by previous work on Gaussian surrogates [2] and
landscape-aware methods [21], I investigate how to embed prior
structure using neural representations. Drawing from recent develop-
ments such as TransOpt [4] and deep active learning [25], I explore
architectures that incorporate attention mechanisms, uncertainty es-
timation, and meta-learning.



Furthermore, I examine the use of pretrained networks on struc-
tured domains (e.g., COCO-inspired parameter spaces) to initial-
ize surrogate models, a direction influenced by neural architecture
search [6] and meta-optimization [29]. Active sampling strategies
and uncertainty-aware loss functions are explored to ensure that each
additional evaluation adds maximal information.

The experimental evaluation will be conducted across a range of
BBO tasks, including synthetic functions from the BBOB benchmark
suite [11], constrained optimization [15], and discrete domains. Eval-
uation metrics include data efficiency, final performance, and model
calibration.

3 Planned Contributions and Future Work
The main objectives of my doctoral research are:

e Systematically evaluate the role of deep surrogate models in
black-box optimization, comparing architectures such as GPs,
MLPs, CNNs, and transformers.

e Develop a framework for transfer learning in surrogate-assisted
BBO, enabling cross-task generalization with minimal adaptation.

o Integrate this framework with CMA-ES and similar evolution-
ary strategies, leveraging active sampling, representation learning,
and model uncertainty.

e Validate the framework across diverse benchmarks, including
structured image-like tasks and real-world optimization domains.

Ultimately, the goal is to establish a general-purpose optimization
approach that combines the flexibility of evolution strategies with the
power of deep learning and transfer-based inductive bias.
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