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1 Introduction
Knowledge Graphs (KGs) are symbolic and machine-understandable
representations of knowledge [10]. They rely on graph data mod-
els for representing facts (triples) consisting of entities (nodes) and
binary relationships (edges). KGs may also deliver schema level
knowledge, typically via ontologies, that enables reasoning services
by specifying the semantics of the symbols (e.g., entity and rela-
tionship names) in the KG. Despite KGs having proved useful in
both academic and business initiatives [19, 24], they are incomplete
and noisy [10] because they often result from a complex (semi-
automatic) building process.

Among KG refinement tasks, Link Prediction (LP) is one of
the most investigated; it aims at predicting missing facts. Neu-
ral/numerical LP methods based on Knowledge Graph Embedding
(KGE) models are prominent as they have showed competitive effec-
tiveness and scalability [20]. KGE models are representation learning
solutions that encode the entities and relationships of a KG as low-
dimensional embeddings (vectors) that reflect the structure of the KG
and that can be leveraged to solve downstream tasks, such as LP, us-
ing efficient linear algebra operations. However, LP methods based
on KGE models generally take into account solely facts and thus dis-
miss schema and reasoning services. This motivates the interest of
this PhD project in pursuing Neural-Semantic (NeSem) LP methods,
that is, LP methods that are semantically enriched by leveraging ex-
tensively schema and reasoning services. Specifically, we intend to
investigate the following Research Question (RQ):

RQ 1 Can we formalize NeSem LP methods showing improved ef-
fectiveness wrt SOTA LP methods?

Furthermore, LP methods based on KGE models are opaque boxes
because the interpretation of embeddings is implicit/latent and no ev-
idence/explanation for the predictions can be obtained. Explanations
and explicit interpretations are crucial, especially in fields where
stakeholders need to understand facts (predictions) before relying on
them for critical decisions. For example, in pharmacology, LP may
be used for predicting the side effects of a drug [18]: stakeholders
need to understand the prediction before relying on them for deci-
sions about funding of research in the drug. In contrast, symbolic LP
methods [13, 15] are clear boxes: the interpretation of the symbols
is explicit. However, symbolic LP methods currently receive limited
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attention since they have often showed limited scalability. This moti-
vates the introduction of Neural-Symbolic NeSy LP methods [25, 5]
for preserving the interpretability of symbolic LP methods, while
maintaining, as much as possible, the effectiveness and scalability
of neural/numerical ones. However, current NeSy LP methods [25]
dismiss schema and reasoning services. Hence, we intend to investi-
gate the following RQ:

RQ 2 Can we formalize NeSem LP methods showing improved in-
terpretability wrt SOTA LP methods?

An alternative approach for supplying explanations for predicted
facts is to provide the explanans 1, i.e., the pieces of knowledge (e.g.,
facts) associated to the prediction. LP eXplanation (LP-X) meth-
ods [23] select the explanans often based on the influence of facts on
the effectiveness of the LP methods. They are often post-hoc (after
training) methods that work for any LP method. However, the ex-
isting LP-X methods generally disregard schema and reasoning ser-
vices. Moreover, as KGs are incomplete, the explanantia are likely to
be incomplete too. Hence, in this PhD project, we aim at NeSem LP-
X methods that leverage schema and reasoning services for reasoning
on the association of existing facts to predictions and for completing
the explanantia by generating hypothesis, i.e., facts missing from the
KG yet possibly true. This leads to the following RQ:

RQ 3 Can we formalize NeSem LP-X methods showing improved
effectiveness wrt SOTA LP-X methods?

As also emerged in the AAAI 2025 Presidential Panel 2, “princi-
pled empirical evaluation [is] more important than ever”. However,
a major problem of existing LP-X methods is the lack of a standard
protocol [23, 14] for evaluating the resulting explanations, thus mak-
ing hard the comparison of explanations for the same prediction, but
coming from different LP-X methods. This leads to the last RQ of
this PhD project:

RQ 4 Can we formalize and standardize an algorithmic protocol for
evaluating explanations?

2 Contributions Provided
In this section, we illustrate the contributions that we made so far,
specifically for RQ 3 and RQ 4.

1 plural: explanantia
2 https://aaai.org/about-aaai/presidential-panel-on-the-future-of-ai-research/



As for RQ 3, we investigated post-hoc LP-X methods, focus-
ing specifically on methods based on combinatorial optimization,
as these work for any LP method. They aim at finding the best ex-
planans, according to an objective function, in a finite set of possible
explanantia constructed from the KG. In this class of methods, the
most effective one is KELPIE [21], which, however, shows significant
computational complexity. In order to tackle this issue, we proposed
KELPIE++ [2], that in principle, could enhance not only KELPIE
but any LP-X method based on combinatorial optimization, with mi-
nor modifications. Specifically, KELPIE++ summarizes, via quotient
graphs, the set of possible explanantia by grouping semantically re-
lated ones [22], thus making optimization more efficient and robust
to noise. KELPIE++ also integrates a semantic similarity measure
in the selection of the possible explanantia from the KG. Introducing
quotient graphs largely increased efficiency and slightly increased ef-
fectiveness, while the semantic similarity measure slighlty increased
effectiveness wrt KELPIE. Moreover, we formalized the complemen-
tary LP-X method IMAGINE [4] that computes explanations consist-
ing of newly generated hypotheses. Specifically, while SOTA LP-X
methods built explanantia starting from the facts (triples) in the KG,
IMAGINE generates hypotheses by summarizing the KG and con-
cretizing it back: the concretization introduces additional facts pre-
viously not present in the KG. IMAGINE outperformed both KELPIE
and KELPIE++ when considering wrong predictions, but was less ef-
fective for correct predictions. This may be due to limitations of the
adopted evaluation protocol (grounded on re-training) that is the one
proposed by KELPIE for the sake of comparison and that is tailored
to explanantia consisting of existing facts.

Concerning RQ 4, we formalized LP-DIXIT [3], that measures the
quality of an explanans returned by a LP-X method. To the best of our
knowledge, LP-DIXIT is the sole existing protocol that is user guided
yet fully algorithmic and generic, i.e., working for explanans com-
ing from any LP-X method and thus allowing to compare explanan-
tia coming from different LP-X methods. LP-DIXIT grounds on a
hypothesis formulated in cognitive sciences [9]: predictions are un-
derstandable when simulatable (predictable). Specifically, LP-DIXIT
measures the Forward Simulatability Variation (FSV) induced by an
explanans for a prediction (made by a LP method), that is it mea-
sures the variation between the simulatability (or predictability) of
a prediction without and with an explanans. A prediction is simu-
latable (with an explanans) if a (human) verifier can correctly simu-
late the prediction, i.e., can hypothesize the output of the LP method
given the same input provided to the LP method (and the explanans).
LP-DIXIT bypasses the need for expert users by employing Large
Language Models (LLMs) in order to mimic human users. We vali-
dated the hypothesis that LLMs can mimic human users by compar-
ing the FSV measured with LP-DIXIT with measures in a ground-
truth dataset [8]. Moreover, we employed LP-DIXIT for comparing
different LP-X methods. The outcomes suggest that less is more: the
most effective explanans are those consisting of exactly one fact.

3 Research Directions for the Remaining Work
The rest of the PhD (started on October 2024) will be devoted to an-
swering RQ 1 and RQ 2 as well as to further investigate the solutions
in reply to RQ 3 and RQ 4.

As for RQ 1, the main goal is the formalization of NeSem LP
methods that take into account schema and reasoning services. Be-
ing Description Logics (DLs) [1] the theoretical framework underly-
ing OWL, that is the de facto standard ontology representation lan-
guage, in order to target RQ 1, we aim at formalizing methods im-

posing logical (DL) requirements [7] within the main KGE architec-
tural components. Specifically, we target both loss functions and the
sampling of negative (false) facts required for learning KGE mod-
els. Indeed, since KGs adopts the Open World Assumption, which
states that missing facts in the KG cannot be considered false unless
derivable as such, negative facts can be hardly found within KGs.
Hence, techniques for generating artificial (possibly false) negatives
are adopted. Instead, we aim for a NeSem approach that would gener-
ate actual negatives. Moreover, we plan to investigate on injecting DL
justifications [11] within the learning process. As for the experimen-
tal evaluation of the newly developed NeSem LP methods, we aim
at showing that, despite the possible additional complexity, schema
and reasoning services pay off in terms of effectiveness. Particularly,
we plan to conduct comparative experimental studies grounded on
established LP evaluation protocols [20].

Regarding RQ 2, the main goal is the formalization of inter-
pretable NeSem LP methods. To this purpose, inspired by related
works on neural theorem provers [17], we aim at formalizing exten-
sions of the tableau algorithm (generally used for reasoning in DLs)
over KGEs, by relaxing logical operators in order to handle numer-
ical representations. We also plan to further extend the contribution
in reply to RQ 3 by exploring abductive reasoning and explanation
based on DLs [12] for computing explanantia that consists of ob-
served facts and new generated hypothesis. Moreover, we plan to ex-
plore other semantic similarity measures that take into account also
the semantics of relationships, e.g., transitivity, symmetry. Further-
more, we target approaches to compute generalizations of multiple
explanantia to be used for reasoning, e.g., through concept learning
methods [6]. Also for RQ 2 and RQ 3 the experimental evaluation,
we aim at showing that schema and reasoning services pay off in
terms of effectiveness, despite the possible additional complexity.
We plan to assess the solutions experimentally based on the proto-
cols resulting from RQ 4 or, alternatively, adopting the re-training
evaluation protocol, proposed for evaluating KELPIE, that compares
the LP accuracy of the KGE model used for the prediction to the
one of a model trained on a perturbed KG, where the facts in the
explanantia have been added, removed or isolated.

Concerning RQ 4, we plan to extend LP-DIXIT in order to as-
sess also if explanations facilitate learning/generalizations as people
ask for explanations not only for understanding, but also for learn-
ing [16]. Moreover, we target the usage of explanation methods for
reasoning based on DLs as ground-truth for LP-X methods. Further-
more, we plan to perform empirical studies on the consistency be-
tween different evaluation protocols. We also aim at validating the
proposed protocols wrt expert curated ground-truth explanations and
evaluations.

Overall, the PhD project will offer the following contributions:
1) a class of effective NeSem LP methods; 2) a suite of NeSem in-
terpretable LP methods; 3) a family of NeSem LP-X methods, pro-
viding semantic explanantia for LP tasks; 4) a new principled and
standard protocol for evaluating explanations.
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