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Abstract. Black-box machine learning in clinical time series poses
trust and efficiency hurdles. We propose dissection as a key strategy
to tackle this limitation. We apply our framework through all four
phases of a model’s lifecycle: data creation, model training, valida-
tion and deployment. Our diagnostic toolset exposes and eliminates
spurious shortcuts. It also introduces inference optimisations inspired
by signal-processing principles. These advances pave the way for
trustworthy and efficient clinical machine learning.

1 Introduction

Recent trends in Machine Learning (ML) follow the big data, big
models paradigm: training on massive datasets with ever larger ar-
chitectures yields unprecedented performance and generalisability.
Generative text and vision models illustrate this trend [3, 20]. On the
wake of this success, large models, paired with continuous monitor-
ing from wearable devices, promise the next technological break-
throughs in medicine [18, 15] with potential innovations such as
biomarker detection [19], patient monitoring [9] and personalised
medicine [22]. This paradigm stands at odds with the classical signal-
processing approach based on mechanistic insight.

Central to our contribution is dissection, which we define as a
phase-wise framework for systematically probing and decomposing
an ML pipeline into its data, model, validation and deployment level
mechanisms. This decomposition aims at exposing spurious correla-
tions and shortcut risks and uncovering interpretability and efficiency
gains. In my research, we ask the main research question:

Main Research Question. How can model dissection be leveraged
to build trustworthy and efficient biomedical time-series models?

In what follows, we explore this question across four stages of a
model’s lifecycle: dataset creation (Section 2), model training (Sec-
tion 3), validation (Section 4) and deployment (Section 5).

2 Data: Is knowledge-free data
collection/processing trustworthy?

Many biomedical signals, such as electroencephalography [2] or
electrocardiography [5], are well studied and their properties are ex-
tensively described in medical and engineering literature. But if large
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scale data and models can automatically uncover latent medical in-
formation, why is this prior knowledge necessary?

Research Question 2.1. Can knowledge-free data collection and
blind feature extraction reliably uncover biomedical signal biomark-
ers?

To answer this question, we study a field in which black-box ML
is the main tool for knowledge discovery: vibration arthrography
[1]. The premise is that pathologic knees present structural abnor-
malities, creating acoustic emissions; machine learning models can
identify these abnormal audio signatures, diagnosing the underlying
pathology. From a medical perspective, little prior knowledge exists
- or even if such an audio-pathological link even exists [6]. Mod-
ern works depend on automatically-extracted features and black-box
models [21]. The main supporting argument: The model’s high diag-
nostic classification accuracy means unhealthy knees indeed produce
"pathological" sounds.

Instead of blind feature extraction and model training, we propose
a reality-centric thorough investigation of the audio signal [12]. We
argue that experimental results should be interpreted under a causal
framework, linking the knee mechanism to a vibration generation
process. To the best of our knowledge, this is the first ever result
reproduction study in this field. We uncover model performance in-
flation due to external information introduced by the experimental
setup: pathological knees do not present any detectable audio differ-
ences compared to healthy knees. Removing external information di-
agnostic (binary) accuracy dropped to 51.28% from reported 80.6%
[21].

Remark 2.1. Without prior signal analysis, models can learn ex-
perimental artefacts and shortcuts rather than pathology; robust
biomarker discovery must begin with causal, domain-grounded data
exploration.

3 Model: Is knowledge-free model building
trustworthy?

If prior knowledge is crucial for data collection and processing, is it
also relevant when building models? After all, modern ML pipelines
only require input-output pairs for training.

Research Question 3.1. How does embedding domain knowledge
into model architectures affect robustness and fidelity?
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In this use case, we study an application with rich prior informa-
tion: extracting heart rate (HR) from photoplethysmography (PPG)
signals acquired from smartwatches. The heart rate component in
PPG is comprised of two harmonics at the heart rate and its double
frequency [4]. Additionally, hand motions introduce artefacts, inter-
fering with the heart rate component [16]. In extreme cases, the heart
rate information may be damaged beyond the ability of recovery.
Deep learning models extracting heart rate are trained on a generic
inference loss, e.g. Mean Absolute Error, matching the model’s out-
put to the ground truth values. No motion artefact separation task is
explicitly given.

We propose Knowledge Informed Deep-learning (KID)-PPG [11],
a deep model with guided training incorporating prior PPG knowl-
edge. Although state-of-the-art models excel in extracting HR un-
der minor interference, they cannot separate motion artefacts from
heart rate. Importantly, they do not seem to learn the required motion-
separation task. To the best of our knowledge, this is the first study
investigating these limitations. Integrating an additional explicit mo-
tion artefact removal step reduces susceptibility to motion artefacts,
reducing HR error by ∼ 35%. Furthermore, guiding the model’s un-
certainty via prior knowledge based data augmentation leads to more
robust understanding of whether heart rate can be retrieved or not -
∼ 37% decrease in negative log likelihood.

Remark 3.1. KID-PPG demonstrates that explicit source separation
and uncertainty guidance produce models that not only isolate the
heart component but also know when they cannot do so.

Future work. Our work demonstrates failure-modes of deep mod-
els, trained without any prior knowledge. But if deep networks are
universal function approximations, why and when do these modes
appear? What dissection tools do we need to answer this question.
Such investigation could uncover failure modes beyond the specific
application, providing insights on when models fail to generalise.

4 Validation: Can knowledge-informed evaluation
enhance trustworthiness?

The use-cases of Sections 2 and 3 demonstrate that, out-of-context,
small loss on a testing subset does not present a full picture of the
data or the model behaviour in the real-world. Then,

Research Question 4.1. How can we build pipelines to evaluate
generalisability, augmented with meaningful quantitative metrics be-
yond accuracy?

For this stage we have focused on EEG-based epileptic seizure de-
tection. We introduce szCore [7], a seizure detection benchmark fea-
ture a private evaluation dataset, prohibiting researchers from overfit-
ting their models on the specific characteristics of the dataset - simu-
lating real-world deployment situations. Notably, szCore reveals that
state of the art models failed to generalise (F1 43%) - lower than
self-reported performance (F1 reaching ∼ 90%) found in the litera-
ture [17].

Furthermore, we explore saliency maps as an accuracy supple-
ment. Such explainability methods have been proposed as a way of
validating models on medical imaging applications, often revealing
shortcut-learning phenomena [8]. Although these methods are use-
ful for image inputs, their use in time-series models is limited: they
can highlight individual important pixels, but they cannot decom-
pose a signal into semantically meaningful frequency or morpholog-
ical components. To tackle this limitation, we have proposed Cross-
domain Integrated Gradients (IG) [13], attributing model outputs to

semantically meaningful transformations of the original time-domain
input. Prior information is integrated by choosing a suitable signal
transformation, e.g., the Independent Component Analysis for EEG.
The method then provides relevance scores for each component.

Remark 4.1. Cross-domain IG bridges prior-knowledge-based sig-
nal transforms and attributions, providing practitioners with seman-
tically meaningful insights and rich evaluation information.

Future work. We proposed Cross-domain IG as a post-hoc anal-
ysis method - how can we integrate it in a large-scale validation
benchmark like szCore? Importantly, can it be elevated to a real-time
reporting tool for clinicians? With Cross-domain IG inevitably in-
creasing the computational complexity during inference, are there
optimisations to ensure these insights can be produced on the fly in
deployed systems?

5 Deployment: Gaining computational efficiency
ML models, and especially deep ones, are often treated as black-
boxes, without any control or understanding of their inner mecha-
nisms. Apart from trustworthiness, this also limits available strate-
gies for optimising computational efficiency. We exploit our study of
the models’ inner workings to propose strategies for computational
efficiency gains. We ground our approach in a signal-processing
based network analysis.

Research Question 5.1. Can insights from model dissections unlock
gains in model inference?

We introduce StreamiNNC [14], a streaming inference optimisa-
tion approach for Convolutional neural networks (CNN). We take
advantage of convolution’s inherent translation invariance to reuse
overlapping windows and reduce per-step complexity. Crucially, we
perform a theoretical analysis to provide approximation error upper
bounds for non-translation-invariant layers, e.g. pooling. We base
these bounds on our analysis of the ReLU activation [10], which
gives an exact Fourier-domain characterisation of the activation func-
tion: it passes all input frequencies, injects a controllable DC compo-
nent and additional harmonics. Our StreamiNNC approach enables
linear, w.r.t. overlap, reductions in operations without compromising
accuracy - e.g. 2.03% NRMSE compared to full inference.

Remark 5.1. By exploiting convolution’s shift-invariance and
ReLU’s frequency properties, StreamiNNC reduces redundant work,
critical for real-time streaming biomedical models.

Future work. Translation invariance is an inherent convolution
property. What other intermediate activation properties can we ex-
ploit for further computational optimisations? Can we guide the net-
work to form properties which would reduce computations without
damaging model accuracy or expressivity?

6 Conclusions
We have introduced dissection as an approach to study the inner
mechanisms of ML models throughout four essential stages, demon-
strating gains in robustness, explainability and computational effi-
ciency. With ever-growing black-box models deployed in critical ap-
plications like healthcare, such analytical methodologies are crucial
to maintain trust and capability of deployment. A natural overarching
open question now surrounds our findings: What is the limit to which
dissection can open the ML black-box?
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