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Abstract. Geological data is inherently heterogeneous, fragmented
across formats, disciplines, and interpretive frameworks. This re-
search aims to address the challenges of integrating and reason-
ing over such data by leveraging neuro-symbolic Al and knowledge
graph (KG) technologies. We propose a modular KG framework ca-
pable of capturing both raw geological observations and layered ex-
pert interpretations, while maintaining interoperability and seman-
tic coherence. By combining formal ontologies, symbolic rules, and
the extraction capabilities of Large Language Models (LLMs), the
approach supports dynamic KG population, interpretation formal-
ization, and multimodal knowledge integration. The neuro-symbolic
paradigm further enables reasoning that is both scalable and context-
aware, where probabilistic evidence from LLMs is reconciled with
logical and domain-specific constraints. This framework is expected
to improve knowledge traceability, support domain expert work-
flows, and promote reuse of geological knowledge across contexts.
The final objective is to offer a prototype that empowers geologists
to structure, query, and evolve geoscientific knowledge in a unified,
machine-interpretable environment.

1 Introduction

Geology is a branch of natural science concerned with the Earth and
other astronomical objects, the rocks of which they are composed,
and the processes by which they change over time [12]. Geology de-
scribes the structure of the Earth, its surfaces and the processes that
have shaped that structure. Geology determines the relative ages of
rocks found at a given location and geochemistry (a branch of geol-
ogy) determines their absolute ages. In fact, the present observable
state of a rock results from the addition of successive incremental
changes acquired during a long and complex history, from their gen-
esis [15]. The geologist’s aim is to reconstruct rock history by iden-
tifying successive events that made the rocks what they are today.
For this reason, he needs to read into various data sources such as
geological features description (boreholes, samples, outcrop), struc-
tural reference, domain reference, lithostratigraphy reference and ge-
ological events reference [20]. Unfortunately, those data are stored in
fragmented, structured or semi-structured formats. This fragmenta-
tion impedes the integration and reuse of data limiting the generation
of actionable insights for interpretation-making. The main challenge
remains to establish the links between all the data towards geolog-
ical event reference. Additionally, a particularly pressing challenge
lies in making visible and navigable the web of interpretations that
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link these diverse data and perspectives. Interpretations are rarely iso-
lated; rather, they are layered, revised, and cross, referenced through
time and by different experts. By Far, compounding this technical
complexity is the inherently interpretative nature of geology itself.
Geological interpretation is not merely a mechanical act of obser-
vation, but an epistemic process influenced by the geologist’s con-
ceptual frameworks, disciplinary background, and contextual under-
standing [19][13]. As such, the classification and naming of geolog-
ical entities often diverge across experts and institutional contexts,
leading to variations in conceptual models and domain vocabular-
ies. These divergences introduce semantic inconsistencies and inter-
pretive subjectivity that are difficult to reconcile when attempting
to build unified or interoperable geoscientific knowledge systems.
Knowledge Graphs (KGs) are graph-based structures that integrate
heterogeneous data, capture domain knowledge [10][6], and enable
explainable Al through symbolic reasoning. In Geology, where elab-
orate rock history relies on synthesizing different information (ge-
ological observations, lithological observations, structural observa-
tions, lithostratigraphic, structural and event reference), we believe
that KGs offer the better way to harmonize both raw observations
and interpretative reasoning in a structured, machine, interpretable
format [14][16]. These technologies provide a robust framework for
representing geological entities and their relationships, capturing the
nuance of expert judgment, and enabling automated reasoning across
distributed data sources. This research proposal examines the chal-
lenges and research opportunities in integrating KGs with neuro-
symbolic Al, highlighting their potential to enhance explainability,
scalability, and modular reasoning to deal with the geological con-
text. The main goal of this work is to develop a prototype for the
geologists that not only structure and store data but also empowering
knowledge capitalization. The importance of the KG is rooted in the
fact that both geological knowledge and data should be integrated to
the digital maps.

2 Related works

Geologic semantic ressources

A variety of semantic resources have been developed to support
knowledge representation and interoperability in the geosciences. At
the general level, GeoSciML [10] has served as a widely adopted
conceptual data model for exchanging geological information, such
as lithologies, structures, and stratigraphic units. Meanwhile, formal
ontologies like SWEET [18] and more recent initiatives such as the
Geoscience Ontology (GSO) [5] and GeoCore [9] aim to provide
logically grounded vocabularies for Earth science concepts, aligned



with upper ontologies such as BFO [3]. These foundational models
form the semantic backbone for cross-disciplinary data integration.

In more specialized areas, targeted ontologies have emerged to
address domain-specific needs. The RESCUE ontology [1] focuses
on reservoir characterization in petroleum geoscience, capturing
domain-specific concepts such as lithofacies, porosity, and structural
traps within a semantic framework that supports reasoning and in-
terpretation. In the field of stratigraphy,[21] developed a detailed on-
tology covering lithostratigraphic, chronostratigraphic, and biostrati-
graphic classifications, offering fine-grained semantic modeling of
geological units and their relationships. Similar efforts in structural
geology include GeoFault [17], which models faults and deformation
structures with logical semantics.

Despite their individual strengths, most current ontologies focus
on descriptive classification, capturing what geological entities are,
rather than how geologists interpret them or how those interpreta-
tions evolve. In addition, semantic alignment across subdomains re-
mains limited, with little interoperability between models developed
for stratigraphy, petrology, tectonics, and geological time. This frag-
mentation reveals a critical gap: the absence of an integrated semantic
layer capable of linking multiple ontologies while supporting inter-
pretive reasoning and contextual traceability. Addressing this gap is
central to the contribution of this research.

Neuro-symbolic approache for dynamic KG construction

The integration of symbolic reasoning and neural models has be-
come a major theme in recent Al research. A recent systematic re-
view of Neuro-Symbolic Al (NSAI) projects from 2020-2024 high-
lights that most contributions focus on learning and inference, logic
and reasoning, and knowledge representation, while important as-
pects such as explainability and trustworthiness remain less explored
[8]. This confirms that the neuro-symbolic paradigm is increasingly
seen as a foundation for developing intelligent, context-aware sys-
tems that combine the scalability of neural methods with the rigor of
symbolic approaches.

Within this landscape, dynamic knowledge graphs (KGs) have re-
ceived particular attention. Traditional KGs are static, but real-world
applications require evolving structures that capture new facts, en-
tities, and relations over time. Recent studies provide formal def-
initions of dynamic KGs and survey neuro-symbolic methods for
tasks such as temporal KG completion and entity alignment [2]. Sim-
ilarly, dynamic reasoning approaches have been explored in com-
monsense domains, where knowledge must be generated on demand
rather than retrieved from pre-existing graphs. For example, dynami-
cally constructed neuro-symbolic KGs were shown to improve zero-
shot commonsense question answering by generating symbolic struc-
tures guided by neural models and using them for inference [4].
These works demonstrate how combining probabilistic extraction
with symbolic structures enables reasoning that is both flexible and
interpretable.

Applications in geosciences are still emerging, but recent ad-
vances illustrate the potential of NSAI for scientific domains. A 2025
study on geochemical prediction in copper deposits integrates LLMs,
knowledge graphs, and symbolic rules to guide machine learning
models. The approach not only improved predictive accuracy but also
enhanced interpretability by grounding computational predictions in
domain-specific rules and expert knowledge [7 ]. This confirms the
suitability of neuro-symbolic techniques for contexts where uncer-
tainty, interpretive knowledge, and domain-specific constraints are
tightly coupled.

Building on these advances, we hypothesize that a dynamic neuro-
symbolic KG can provide a suitable reasoning environment for geol-

ogy. Large language models (LLMs) can be leveraged to extract en-
tities, relations, and interpretive statements from heterogeneous ge-
ological sources, while ontologies and expert rules ensure seman-
tic validity and logical coherence. Rather than binary validation,
rules and constraints interact with probabilistic evidence to support
weighted inference and the emergence of new, context-aware inter-
pretations. Such a system would allow geological knowledge graphs
to capture not only raw observations but also evolving interpreta-
tions, maintaining traceability and semantic coherence across subdo-
mains

3 Research Questions and key research challenges

According to those facts, we are leading to the following researches
questions :

RQ1: what is the role of KG in order to manage and integrate
heterogeneous geological sides ?

H1: To deal with the geological landscape, it is important to have
a unified and logical structured. KGs serves as universal data model,
offering a conceptual representation enabling interoperability based
on linked data principles. the main idea is to integrate existing se-
mantic resources to establish this graph in a modular way. The KG is
partitioned according to geologic specific features.

RQ2: Can a modular knowledge graph architecture, driven by
query context, support scalable and domain specific reasoning in ge-
ologic applications?

H2: A modular, query-driven KG system improves computational
efficiency and semantic relevance by dynamically loading only the
required ontology modules.

RQ3: How can neuro-symbolic approaches, combining Large Lan-
guage Models (LLMs) with ontologies and domain-specific rules,
support dynamic knowledge graph construction and probabilistic
reasoning in geology?

H3: LLM:s can assist in extracting candidate entities, relations, and
geological processes, while ontologies and expert rules provide for-
mal and domain-grounded validation. Their integration in a neuro-
symbolic setting enables the construction of dynamic knowledge
graphs, where probabilistic evidence and symbolic constraints inter-
act to support coherent, traceable, and evolving geological interpre-
tations.

4 Conclusion and future Work

This research, still in its early stage, proposes a neuro-symbolic
knowledge graph approach to address the integration and reason-
ing challenges of geological data. At present, the work focuses on
a survey of existing semantic resources in geology to evaluate their
coverage and identify gaps. The next step will be to build a geolog-
ical ontology by aligning these resources and extending them with
missing modules for domains. This ontology will serve as the back-
bone of a modular KG that integrates heterogeneous sources and cap-
tures both observations and interpretations. LLMs will then be em-
ployed to extract and populate knowledge from geological corpora,
while symbolic rules and logical constraints ensure semantic valid-
ity and coherence. The framework will be progressively tested and
refined with the involvement of geology experts to evaluate its inter-
pretability and usability. The long-term goal is to deliver a dynamic
and expert-validated system that supports geological interpretation,
strengthens knowledge traceability, and enhances the integration of
geoscientific knowledge into digital maps.
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