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Abstract.  Although Neural Language Models (NLMs) exhibit
powerful performance on many NLP tasks, identifying what knowl-
edge is contained in these models remains an open challenge. This
work presents the application of four probing tasks based on fig-
ures of speech (hyperbole, metaphor, pleonasm, and oxymoron). The
evaluations are based on the state-of-the-art Minimum Description
Length (MDL) method and are conducted analysing learning trajec-
tories among the model layers. The aim of this work is to understand
whether NLMs have the semantic knowledge needed to identify these
figures of speech, where such is located and when it is acquired dur-
ing training. The temporal localization is conducted by analysing the
model checkpoints, whereas the positional localization is about the
model layers. The preliminary results show that this semantic knowl-
edge is acquired in the initial phase of the training and is located in
the middle layers of the models analyzed.

1 Introduction

Since the rise of Neural Language Models (NLMs), they showed
promising abilities in different fields, such as machine translation,
sentiment analysis and summarization [5, 7]. To complete these
tasks, linguistic and syntactic knowledge has to be contained in these
models, and many researchers focused their work on understanding
and studying how this knowledge is learned and stored within these
models [10, 3, 6].

One stable and widely used methodology for conducting these
types of analysis is probing. This technique is used to understand
what kind of knowledge is contained whitin a model. This is achieved
by training a simple neural network, called probe, on some embed-
ding representations produced by a frozen NLM. The idea is that
if a probe successfully learns to complete the task, then the repre-
sentations contain enough information relative to the task. Figure 1
shows schematically how a probe works. A growing line of research
is the evaluation of how and which semantic knowledge is acquired
by NLMs. In this direction, some work has been done: the authors of
[1] design a probing task using metaphor to check if a models recog-
nise their presence in a sentence instead the authors of [11] focus on
hyperboles with the aim of understanding if NLMs can recognize this
figure of speech in the English language. Other works focus on gram-
matical and syntactic knowledge and investigate if these proprieties
are contained in BERT [9].

In general, the ability of NLMs to understand semantic aspects is a
key component of a broader and more comprehensive understanding
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Figure 1. General scheme of the probing technique. A sentence is fed into
a NLM (which is frozen) that produces a representation of the sentence.
These representations are used to train the probe, i.e. a simple neural
network, to complete a classification task.

of language in a more general sense, and is still not fully explored, so
more studies are needed in this direction. This work tries to fill this
gap by applying methods to evaluate models’ understanding of spe-
cific aspects of the language. In particular, the aspects analyzed are
from the semantic part of the language, in particular, figurative lan-
guage. These semantic concepts are systematically evaluated through
probing of the available checkpoints and across the layers that com-
pose the model. This allows us to conduct a more in-depth analysis
and investigate this type of knowledge.
In summary, this work addresses three research questions:

RQ1. When is the knowledge acquired during training?
RQ2. Where is this knowledge located, once learned?

RQ3. Does the model contain enough knowledge to identify these
figures of speech?

2 Methodology

This work is based on the probing methodology and the preliminary
results shown are based on the GPT-NeoX Pythia models [4]. The
probes are designed as a neural network with two hidden layers of a
number of neurons obtained by dividing the size of the embeddings
of the models used by 4. These probes are trained using the represen-
tations produced by the model, as in the standard probing method.
Subsequently, the probe is evaluated to finally understand whether
the task is achieved by the NLM.

Probe evaluations The probe evaluations are conducted using
the Minimum Description Length (MDL) approach, in particular in
terms of the compression metric [13]. The accuracy metric could be
the first choice for evaluating probes but this can lead to high val-
ues also for random initialized probes. So, accuracy is not the best



metric if we want a robust probe analysis. Instead, the compression
metric quantifies the effort made by the probe to extract a specific
concept together with the quality of the classification. These details
make compression robust to random probes and more informative
rather than accuracy.

Probing tasks and data The tasks are designed based on four fig-
ures of speech: (i) hyperbole (a deliberate exaggeration of a concept),
(ii) metaphor (the transfer of meaning from one conceptual domain
to another by analogy), (iii) pleonasm (the use of redundant words
or expressions) and (iv) oxymoron (the juxtaposition of contradic-
tory terms). The figures of speech are merely related to the semantic
field of language since they are focused on the meaning of a group of
words. The data used are taken from different sources and the author
pre-processes them in order to verify their correctness. In detail, the
hyperbole data is taken from [12], the metaphor data is from [2], the
pleonasm dataset is adapted from [8], and the oxymoron dataset is
taken from [14].

Learning Trajectories Since model knowledge is strictly corre-
lated with model training, it is interesting to understand when this
knowledge is acquired. For this purpose, we have to probe the model
in his intermediate states, called checkpoints, saved during the train-
ing process. By executing the probes they produce a compression
value for each checkpoint, and these compression values represent
the learning trajectory of a probing task. Calculating these trajecto-
ries makes it possible to observe when the knowledge required to
successfully complete a task, is acquired during training. Moreover,
comparing the learning trajectory of different models on the same
task allows to understand the dynamic of the training process. For
example, a certain task can reach high compression values later dur-
ing training with respect to another task.

Layer analysis Since all model layers produce an embedding rep-
resentation of fixed length, it is possible to analyse the learning tra-
jectories for all the intermediate layers. This lets us break down the
localization of the knowledge inside the model architecture. Intu-
itively, a concept is located in a specific layer if his compression is
higher than that of the other layers.

3 Preliminary results and discussion

Our preliminary results are shown in Figure 2 that highlight some
key differences in the four evaluated probing tasks: the oxymoron
trajectory reaches the highest compression value (about 6), far ex-
ceeding the other trajectories. The pleonasm and metaphor trajecto-
ries reach values near 1.5: this suggests that the model struggle to
recognize these rhetorical figures. Regarding the hyperbole trajec-
tory, it settles near 2 after 10B training steps. The key claim that we
can extract from these results is that the trajectories reach high val-
ues in the initial stages of training, i.e. before the first 60B tokens.
Therefore, as we can see in Figure 2, the trajectories at some point
stabilize—around 73 B tokens for oxymoron and around 105 for the
others—and no longer increase in value. This behavior indicates that
the models, even when trained on more tokens, do not improve their
ability to understand this figure of speech. This finding is consistent
with the key claim that such linguistic aspects are learned early dur-
ing training. Another takeaway from Figure 2 is the consistently low
values of the pleonasm trajectory, which remain between 1.46 and
1.49 throughout all training steps. This indicates that the model’s
ability to recognize and handle this figure of speech is quite limited.
This could be due to the fact that the model may treat superfluous
words as “perturbations”, undermining performance on this task.

Table 1. Compression values of the best and the last layer at fixed
checkpoints for the oxymoron task on the 70 M model. The portion of tokens
denote the percentage of the total token (300B) a checkpoint is trained on.

Layer | 2% 4% 6% 8% 10% 20% 50% 100%

Best(2) | 330 3.54 350 361 359 379 3.6l 3.74
Last(6) | 325 3.59 350 3.65 357 355 338 1.99
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Figure 2. Best layer trajectories of the four figures of speech on the Pythia
GPT-NeoX 410M model on 136 B training steps.

From a preliminary probing on all the layers of the models, it
emerges that the layers that achieve a higher compression in their
trajectory are usually located in the middle of the model. Indeed,
in the 4100 model (which is composed of 24 layers) the best layer
for each task are the layer 14 for hyperbole, 15 for metaphor and 12
for both oxymoron and pleonasm. A more detailed analysis, that we
conduct on oxymoron, reveals that there are significant differences
in the value of the best and the last layer. As summarized in Table 1,
the compression values of the best layer are similar to the last layer
on the first 10% portion of the 700 model on the oxymoron task,
but the trajectory of the last layer begins to decrease considerably af-
ter 10%. In fact, the last layer has a compression at 10% of 3.57, at
20% of 3.55, at 50% of 3.38 and at the end of the training of 1.99, a
decrease of 87,9% with respect to the best layer. This is an interest-
ing aspect of this type of analysis that is not yet fully explained by
researchers.

4 Conclusions and Future work

In conclusion, this work addresses some concerns about the posi-
tional and temporal localization of semantic knowledge. By using
the state-of-the-art Minimum Description Length (MDL) method and
probing techniques applied to several checkpoints and layers of the
models, we can locate this type of knowledge. The preliminary re-
sults shown are produced systematically using probing tasks and
evaluating learning trajectories. Furthermore, to investigate the po-
sition of the acquired knowledge, the probing technique is extended
to all layers of the model, identifying different performance across
the layers. The results highlight that semantic knowledge is acquired
early during training (RQ1) and is located in the middle layers of the
model (RQ2). In addition, the different figures of speech have differ-
ent degrees of detectability by the model (RQ3). To extend this work,
it may be interesting to expand the probing tasks to different figures
of speech or different types of knowledge. Another engaging future
direction is to analyze other architectures and bigger models.
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