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Abstract. Machine learning (ML) techniques are progressively be-
ing used in biomedical research to improve diagnostic and prognostic
accuracy when used in conjunction with a clinician as an Al-powered
decision support system. However, many datasets used to develop
these systems often suffer from severe class imbalance due to small
population sizes. This leads to a ML/deep learning (DL) model to be-
come biased to majority class samples. Current oversampling meth-
ods focus primarily on balancing datasets without adequately vali-
dating the biological relevance of synthetic minority class data, risk-
ing the clinical applicability of downstream model predictions. In
addition, in multimodal scenarios, current oversampling methods do
not consider cross-modal alignment of synthetic data. Consequently,
these methods do not explicitly allow for cross-modal generation of
missing modality information. Subsequently, due to these problems,
this PhD will focus on three broad research areas: the generation of
biologically feasible synthetic gene expression Data; the alignment
of synthetic data for multiple modalities, and the generation of syn-
thetic modalities where modality information may be missing for mi-
nority class samples.

1 Introduction

I am in the second year of my PhD, supervised by a diverse team of
computer scientists, clinicians, and bioinformaticians. My research
focuses on the complexities of biomedical datasets. These datasets
are often characterised by small population sizes and class imbal-
ances, where samples representing the disease of interest are limited
compared to many samples from controlled patients[3, 11, 26, 28].
This is particularly concerning in disease diagnosis, where the minor-
ity class often represents critical conditions [2, 30]. Such imbalances
undermine clinicians’ trust in Al-driven models using this data [4].

Oversampling addresses this issue by generating synthetic sam-
ples of the minority class to equal the number of majority class sam-
ples [29]. This technique helps mitigate bias towards majority-class
samples in ML/DL models. Biomedical research increasingly uti-
lizes multimodal datasets, which can encompass clinical data, imag-
ing data like MRI and CT scans, and genomics data that influences
disease susceptibility and treatment response [22].

However, cross-modality imbalances necessitate oversampling to
reduce bias. The quality of synthetic samples is crucial for clinical
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reliability but can be compromised by four data-imbalance types: (i)
class, (ii) dimensionality, (iii) performance, and (iv) modality imbal-
ance.

The following research questions will guide this work:

e (RQ1) Optimize the biological feasibility of synthetic gene ex-
pression samples to improve clinical reliability and downstream
classification accuracy in imbalanced datasets.

e (RQ2) Improve cross-modality alignment of synthetic data to en-
sure synthetic fusion data equitably represent each modality, irre-
spective of dimensionality or performance imbalances, enhancing
multimodal classification.

e (RQ3) Refine synthetic data generation to address missing modal-
ity information in multimodal datasets, enabling more comprehen-
sive representations and biomarker discovery.

2 Related Work

Oversampling methods can be broadly classified into interpolation-
based methods and deep generative methods (DGMs). Interpolation-
based methods create synthetic samples by interpolating between
minority class samples and the K-Nearest Neighbors (KNN). The
Synthetic Minority Oversampling TEchnique (SMOTE) [5] gener-
ates synthetic samples, but may mislabel them by ignoring class la-
bels. Borderline-SMOTE [13] addresses this by focusing on over-
sampling critical border points. ADAptive SYNthetic (ADASYN)
[14] enhances oversampling by generating samples around points
with greater impurity. Despite their utility, these methods can intro-
duce biases [1] and may not completely eliminate the bias of the
majority class samples [21]. A multi-method approach has been pro-
posed to enhance dataset diversity [17] by oversampling a dataset
with multiple interpolation-based methods and selecting the best syn-
thetic samples to be included in a study.

DGMs, such as Variational Autoencoders (VAEs) [19] and Gen-
erative Adversarial Networks (GANs) [12], also generate synthetic
data, but face problems such as posterior collapse in VAEs and mode
collapse in GANSs [25]. While Wasserstein GAN (WGAN) [10] can
mitigate mode collapse, it requires large datasets with many samples.
In addition, combining interpolation-based methods with DGMs may
misrepresent minority classes.

Ensuring biological validity in gene expression data through dif-
ferential expression analysis is essential when oversampling this



data[23]. Utilizing differentially expressed genes (DEGs) for over-
sampling supports robust modeling and preserving biological in-
tegrity. Which can be evaluated through signaling pathway [23] and
gene co-expression analyses [9]. However, there is little consensus
on what defines biologically feasible synthetic data [6].

Traditional data fusion methods such as early, late, and intermedi-
ate fusion are foundational for multimodal deep learning [15, 8, 27].
Recently, deep multimodal models have been used for oversam-
pling in healthcare, such as conditional GANSs that synthesize patient
records [24] and radiogenomic profiles for cancer [7]. Data imbal-
ance also arises when synthetic data misrepresents the majority class,
leading to biological, dimensionality, and performance imbalances
[23,27,7].

3 Methods

To address RQ1, we propose the Biological Evaluation Framework
for Oversampling (BEFO) gene expression data, consisting of four
key steps as illustrated in Figure 1: (1) Detecting Biological Pat-
terns: We utilize Weighted Gene Co-expression Network Analysis
(WGCNA) to identify gene co-expression clusters; (2) Generating
Synthetic Samples: Various oversampling techniques are used to
oversample the imbalanced dataset and independently generate syn-
thetic samples; (3) Evaluating Biological Feasibility: We use a col-
lection of random forests to assess the alignment of synthetic sam-
ples with the original clusters identified in step 1; (4) Self-Learning:
We add biologically feasible samples to the training dataset and it-
eratively repeat steps 2-4 until the number of minority class sam-
ples equal the number of majority class samples. This procedure
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Figure 1. Proposed BEFO Methodology

rigorously evaluates each synthetic sample for biological feasibil-
ity/relevance by integrating gene co-expression analysis to retain
only meaningful samples.

Gene co-expression analysis uses WGCNA to identify co-
expression clusters of differentially expressed genes in minority-
class samples. Co-expressed genes share expression patterns, indi-
cating functional relationships and involved pathways [20]. WGCNA
groups genes into clusters based on expression similarity, with non-
significant genes forming their own seperate cluster [16].

We align synthetic samples with the WGCNA-defined ground-
truth clusters using a collection of random forests. Random forests
yield sample importance scores with high scores indicating fit to
these clusters. Synthetic samples with scores higher than the origi-
nal samples are kept, ensuring greater biological relevance.

Biologically feasible synthetic samples are then added to the
original dataset for continued oversampling. This iterative process

improves dataset quality by reinforcing alignment with gene co-
expression patterns, preserving biology and boosting ML/DL model
performance.

4 Results

To evaluate the performance of our proposed BEFO approach, we
conduct our experiments on five publicly accessible, real-world
datasets. In addition to this, we use a dataset (FASTMAN dataset) ob-
tained from our affiliations at the University of Manchester [18]. The
primary characteristics of each dataset can be seen in Table 1. The

Dataset Samples | Class Imb. | Features | Clusters
Breast Cancer 78 0.38 142 12
Pancreatic Cancer 220 0.10 438 25
Prostate Cancer-Cambridge | 66 0.38 377 33
Prostate Cancer-FASTMAN | 184 0.11 416 22
Prostate Cancer-Michigan | 88 0.44 400 24
Thyroid Cancer 167 0.49 142 9

Table 1. Characteristics of gene expression datasets. This table shows the

total samples, class imbalance (minority/majority), the number of features,
and the number of WGCNA-defined gene co-expression clusters.

Fowlkes-Mallows Index (FMI) assesses whether gene co-expression
patterns are preserved after adding synthetic samples to an imbal-
anced dataset, measuring the similarity between original and over-
sampled WGCNA clusters [8]. The FMI ranges from O to 1, integrat-
ing precision and recall to evaluate clustering performance.

We ran experiments comparing average F1 scores and Area Un-
der the Curve (AUC) for models trained on datasets oversampled
using (base) state-of-the-art methods (SMOTE, Borderline-SMOTE,
ADASYN, CTGAN, VAE) with and without our BEFO approach.

Results in Table 2 show that oversampling using our BEFO ap-
proach significantly enhances predictive performance.

Dataset Base BEFO
FMI F1 AUC|FMI F1 AUC

Breast Cancer 0.59 0.56 0.73 | 0.75 0.61 0.74

Pancreatic Cancer 0.24 048 0.77 | 031 0.59 0.83

Prostate Cancer-Cambridge | 0.61 0.48 0.68 | 0.61 0.54 0.75
Prostate Cancer-FASTMAN | 0.63 0.47 0.69 | 0.69 0.56 0.77
Prostate Cancer-Michigan | 0.39 0.87 0.96 | 0.47 0.93 0.97
Thyroid Cancer 0.66 0.77 0.88 | 0.83 0.84 0.91

Table 2. Comparison of average FMI, F1, and AUC values for 5
state-of-the-art oversampling methods, with and without BEFO (Base). Bold
scores indicate BEFO increases over the base methods.

5 Future Work

Currently our contribution to RQI is a paper titled "Towards a Bio-
logical Evaluation Framework for Oversampling (BEFO) gene ex-
pression data". This work is focused on improving the biological
validity of synthetic gene expression data. Thereby improving the
realism of the synthetic data and clinical reliability of downstream
model diagnostic and prognostic performance. Additionally, our plan
to address RQ2, is to develop a sophisticated multmodal GAN using
a novel data fusion technique based on Dempster-Shafer theory, to
improve synthetic data alignment between modalities. Our work on
RQ3 on the generation of synthetic data for samples with missing
modalities will complete a coherent and impactful thesis.
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