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Abstract. Learning from Demonstrations (LfD) allows robots to ac-
quire skills for various tasks by imitating how humans perform them.
However, untrained human users are not necessarily good teachers
for the robot learners. Even though they may be domain experts in
the target task itself (i.e., optimal in performing the task), the over-
all distribution of the demonstrations they provide may not be most
beneficial for robot learning (i.e., sub-optimal in teaching the task).
To achieve robust robot learning under sub-optimal human teaching
while taking human factors into account, my research focuses on de-
veloping active LfD algorithms that empower robots to take more
initiative by actively querying human demonstrations that may better
support robot learning. Additionally, my research examines human
factors beyond user experience and further investigates how active
LfD may influence human teaching strategy after experiencing ac-
tive guidance, attempting to extend the active LfD paradigm to fos-
ter a reciprocal learning loop between human teachers and the robot
learner.

1 Introduction

Learning from Demonstrations (LfD) has achieved great success in
robotics, enabling robots to acquire all kinds of skills by imitating
how humans perform the tasks [2, 16, 17, 26]. However, humans are
not necessarily good teachers for robots. Even when human users
are domain experts in the target task and able to demonstrate the
optimal action to take for every state encountered in their demonstra-
tions (i.e., optimal in performing the task), the overall distribution of
demonstrations they choose to provide may not be optimal for robot
learning (i.e., sub-optimal in teaching the task) [12].

One intuitive strategy is to adopt the uniform distribution as the
target for human demonstrations and cover as many diverse areas
of the task space as possible. However, without proper guidance,
the natural distribution of human demonstrations often tends to be
imbalanced and biased [11, 27], which can be detrimental to robot
learning [5, 29]. To actively guide human teachers to overcome sub-
optimal teaching, my research begins with the conventional LfD set-
ting where demonstrations are provided before policy learning (i.e.,
offline demonstrations) and has developed an algorithm that queries
offline demonstrations from humans and shapes them toward target
distributions to better facilitate robot learning [11].

However, the uniform coverage strategy may not necessarily be
optimal for robot learning [12]. Certain critical areas of the state
space that are encountered less frequently can be much harder for
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the control policy to generalize to (e.g., encountering an oncom-
ing vehicle in autonomous driving). These areas may require more
demonstrations than more common but simpler situations (e.g., driv-
ing straight with no vehicles nearby). Furthermore, the probability
distribution of the robot running into different areas of the state space
is dependent on the evolving control policy, which is non-stationary
and constantly updates its action distributions over states throughout
learning. Therefore, it is impractical to determine the optimal distri-
bution of human demonstrations a priori before robot learning begins
[12,13].

Instead of learning with offline human demonstrations in a demo-
then-training manner, previous efforts [6, 7, 20] have been made
to learn with online human teaching input in a demo-while-training
manner. However, similar to the issues in the settings with offline
human demonstrations, what human teachers choose to demonstrate
may not be most beneficial to robot learning. Situations that human
teachers perceive as easy to learn may prove difficult for learning
agents to generalize, and vice versa. And this mismatch may con-
sequently lead to redundant or missing coverage of the state space.
Furthermore, since human teachers are expected to provide teaching
input while the robot is learning the task, deciding when to intervene
becomes an additional challenge for them. This may lead human
teaching to be even more sub-optimal without any external guidance.
To address sub-optimal human teaching with online demonstrations,
the second phase of my research enables the robot to take an active
role in the learning process by designing active LD algorithms that
optimize the timing and content of the robot queries for episodic hu-
man demonstrations [12, 14].

In addition to the robot learning performance, human factors are
also critical to take into account when a human teacher is involved
in the learning loop. Previous work [12, 20] has made consider-
able efforts to improve user experience, but has underexamined other
equally important aspects beyond it, such as the influence on human
teaching strategies after experiencing robot guidance. To this end,
the third phase of my research further extends its focus to reciprocal
human-robot interactive learning, designing active LfD algorithms
that aim to benefit both robot learning and human teaching.

To summarize, aiming to overcome sub-optimal human teaching
in the context of robot learning from human demonstrations, my
research develops active learning algorithms that may: 1) actively
shape the imbalanced distribution of offline human demonstrations
for the conventional demo-then-training LfD setting; 2) optimize the
timing and content of queries for online human demonstrations to im-
prove robot learning performance; 3) take into account the influence



of L{D algorithm design on human teaching and build a reciprocal
learning loop between human teachers and the robot learner.

2 Active Learning with Offline Human
Demonstrations

Aiming to overcome the sub-optimal human teaching in the conven-
tional L{D setting with offline human demonstrations, one of my re-
search has developed an active learning algorithm that enables the
robot to shape the distribution of human demonstrations by actively
guiding its interaction with humans [11]. Previous work attempted
to solve the imbalanced demonstration distribution after the data are
already collected, either via data curating approaches [1, 19, 21] or
revising the cost function to unbias policy learning [5, 9, 29]. Few of
them paid careful attention to data abundance during the data acqui-
sition process and put efforts to maintain a balanced data distribution
from the early phase.

To solve the demonstration imbalance in the early phase of data
acquisition, we explicitly took into account the influence of robots
on human teacher behaviors and enabled the robot to actively guide
its interaction with humans to shape the distribution of collected data
[11]. More specifically, we formalized such an active data collec-
tion process into a discrete finite-horizon Markov Decision Process
(MDP) to maintain data balance against uncertainties during the data
collection process. Results for the experiments of simulated data col-
lection verified our method’s generalization capability to actively
shape the resulting distribution into various target distributions, along
with its robustness to different levels of uncertainties during the data
collection process. Furthermore, we verified our method’s efficacy
in real-world robot tasks and demonstrated improved robot learning
performance in unseen situations when robot policies were trained
with demonstrations of more balanced distributions shaped by our
active data collection method.

3 Active Learning with Online Human
Demonstrations

Due to the intractability of determining the optimal demonstration
distribution a priori, my research has also developed algorithms that
optimize the sequence of robot queries for episodic human demon-
strations by actively deciding both when and what to query through-
out the learning process.

Previous work [4, 6, 7, 8, 18, 23, 25] attempted to solve the
problem by querying isolated state-action pairs from human teach-
ers whenever the robot perceives high uncertainty. However, these
approaches require frequent context switching, which imposes high
cognitive demands on humans and increases the risk of errors or
noise in providing immediate interventions. To overcome these chal-
lenges, my research has developed an active learning algorithm that
enables the robot to actively request episodic demonstrations (i.e.,
from an initial state to a terminal state) for better learning perfor-
mance and improved user experience [12]. More specifically, we con-
struct a trajectory-based uncertainty measurement of the robot policy
based on temporal difference errors of episodic policy roll-out and
utilize it to optimize the decision of when to query and what to query
in a trajectory-based feature space. We test our method on three sim-
ulated navigation tasks with sparse rewards, continuous state-action
spaces, and increasing levels of difficulty. Results indicate that our
method converges to expert-level performance significantly faster in
both experiments with oracle-simulated demonstrators and real hu-

man expert demonstrators, while also achieving improved perceived
task load and consuming significantly less human time.

To further explore the potential of active LfD in robotics, my re-
search has also extended beyond the learning-from-scratch setting to
the policy transfer scenario, where the common issue of covariance
shift in LfD can be further exacerbated by discrepancies in task space
between the source and target domains [14]. We have extended our
EARLY framework to the transfer learning scenario and simultane-
ously optimized the problems of when to query and what episodic
demonstrations of the target task to query during the policy trans-
fer process. We validate the effectiveness of our approach in 8 robot
policy transfer scenarios, involving policy transfer across diverse en-
vironment characteristics, task objectives, and robotic embodiments.
Results from simulations and preliminary sim-to-real experiments
demonstrate that our method achieves significantly higher success
rates and greater sample efficiency in target tasks that other baseline
methods struggle to address.

4 Reciprocal Human-Robot Interactive Learning

Going beyond common human factors like user experience, my re-
search also examines the influence of active guidance on human
teaching, aiming to design an active LfD algorithm that may benefit
both robot learning and human teaching. Specifically, this work is in-
spired by Curriculum Learning (CL) [3], the general idea of which is
to break the original hard task into a sequence of sub-tasks with grad-
ually increasing difficulty. Such scaffolding not only benefits robot
learning [10, 28], but also is intuitive to common human users as it
well aligns with how humans naturally learn new tasks [15, 24].

In our approach [13], we construct a sequence of curricula with
gradually increasing difficulties by resetting the environment to
states that are progressively farther away from the task goal area
and closer to the initial state space of the original task. Queries
for demonstrations will be iteratively generated based on the lat-
est maintained curricula, which will not only gather demonstrations
for the robot to imitate but also automate the curriculum expansion
and iteration process, guiding policy exploration. We evaluate our
method on four simulated robotic tasks with sparse rewards, achiev-
ing much better converging policy performance and sample effi-
ciency. A further user study shows that our method takes less human
time and fewer failed demonstration attempts while improving per-
guidance teaching performance, post-guidance teaching adaptability,
and teaching transferability to unseen tasks.

5 Future Work

Our work so far has assumed that human teachers are domain ex-
perts. In reality, they are often neither experts in task execution nor
in teaching. Future research will aim to design active LfD algorithms
that address this dual sub-optimality by optimizing queries based not
only on the demonstrations most beneficial for policy learning but
also on the human teacher’s capacity to provide them.

Additionally, our current work assumes access to a reset function
that allows the environment to be initialized from any desired state
for querying demonstrations, which is impractical in real-world set-
tings. Our future work will reframe the problem within the context of
Autonomous Reinforcement Learning [22] without assuming a reset
function. We aim to develop active querying strategies that balance
the reachability of queried states under the current policy with the ex-
pected learning gains, enabling the robot to learn both environment
resetting and the primary task itself.
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