
Action-Failure Resilient Planning
Alberto Rovetta

PhD Advisors: Alfonso Emilio Gerevini, Diego Aineto, Enrico Scala, Ivan Serina
Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy

alberto.rovetta@unibs.it

1 Introduction
This work introduces the task of "Resilient Planning," a novel ap-
proach that seeks to handle action failures during plan execution and
ensure robust goal attainment. It considers scenarios where the exe-
cution of a plan in the real world can be thwarted by external factors
that make planned actions infeasible. The traditional classical plan-
ning models often fail to account for such unforeseen action fail-
ures, as they merely verify the correctness of plans in an abstract
world. Anticipating and addressing all possible execution failures us-
ing detailed planning models can result in a overly complex state and
action models, making the planning process cumbersome. In auto-
mated planning, a common strategy for handling action failures in-
volves alternating between plan execution and replanning from the
state where the failure occurs [5]. In some cases, this can be done by
repairing the existing plan rather than starting over with a new one
(e.g., [2, 3, 4]). However, this approach does not always ensure that
the plan can be fixed in a way that still achieves the original goal. To
tackle this issue, we propose a complementary method focused on
generating plans that come with repair guarantees in the event of ac-
tion failures during execution. We define the task of finding solutions
to classical planning problems that can withstand action failures as
Resilient Planning, and we refer to the resulting plans as K-resilient
plans. These plans ensure that an agent can always reach its goal (po-
tentially by replanning alternative sequences of actions) as long as no
more than K action failures occur on the way to the goal.

2 Background on Classical Planning
A classical planning problem is a tuple ⇧ = hF,A, s0, Gi whose
components are defined as follows. F is a finite set of positive literals
inducing a set S of states. A state s 2 S is a subset of F . If an
element f 2 F is in a state s then f is true in s; otherwise f is false
in s by the closed world assumption. s0 is the initial state. G ✓ F

is the problem goal consisting of a set of literals over F that should
hold in any goal state. A is a set of actions; each action a 2 A is
specified by the pair a = hpre(a), e↵(a)i where pre(a) ✓ F is
the precondition set of a, and e↵(a) the effect set of a formed by
subsets of positive and negative literals over F , that are denoted with
e↵(a)+ and e↵(a)�, respectively. An action a is applicable in state
s iff pre(a) ✓ s, and we denote the set of actions applicable in state
s with A(s). The application of an action a 2 A(s) in s generates
a state s

0 = s[a] such that, for every fluent f 2 F , f is in s
0 iff

f 2 (s \ e↵(a)�) [e↵(a)+.

A plan ⇡ is a sequence of actions in A, i.e., ⇡ = (a1, . . . , an).
Given a planning problem ⇧ = hF,A, s0, Gi, (s0, s1, · · · , sn) is the
trajectory of states induced by applying ⇡ in s0, i.e., si = si�1[ai]
for i = 1, · · · , n. A plan ⇡ = (a1, . . . , an) is a solution for ⇧ =
hF,A, s0, Gi iff the induced trajectory of states (s0, s1, · · · , sn) is
such that for all i 2 [1, n] it holds that pre(ai) ✓ si�1 and G ✓ sn.

3 Resilient Solutions and Algorithm
Resilient planning [1] describes the world through a (classical) plan-
ning problem but explicitly considers at planning time that actions
can fail at execution time; if an action fails, that failures do not mod-
ify the state of the world and cannot be reapplied. Our formalisation
of resilient planning and its solutions rely on the following notion of
resilient states.

Definition 1 (k-Resilient State). Let ⇧ = hF,A, s0, Gi be a plan-
ning problem, S the state space induced by F , and k a non-negative
integer.

(i) A state s 2 S is 0-resilient in ⇧ iff there is a plan from s that
achieves G (i.e. hF,A, s,Gi is solvable);

(ii) A state s 2 S is k-resilient in ⇧ if s |= G;
(iii) A state s 2 S such that s 6|= G is k-resilient in ⇧ for k � 1 iff

there exists an action a 2 A(s) such that (1) s[a] is k-resilient
in ⇧ and (2) s is (k � 1)-resilient in hF,A \ {a}, s0, Gi.

A state s is k-resilient in a planning problem hF,A, s0, Gi if the
goal G can be achieved from s even after k action failures occur
along the way of a plan from s to G. Definition 1 formalizes this
notion by considering that the execution of an action a applicable in
s can either success or fail. The definition of k-resilient state implies
that there exists a trajectory from the state to the goal where all states
are k-resilient.

A resilient planning problem is a pair h⇧,Ki where ⇧ is a plan-
ning problem and K is an non-negative integer (classical planning is
a special case of resilient planning with K = 0).

Definition 2 (k-Resilient Plan). Given a planning problem ⇧ =
hF,A, s0, Gi, a solution plan for ⇧ that induces a state trajectory
(s0, s1, . . . , sn) is k-resilient for ⇧ if, for all 0  i < n, it holds
that si is k-resilient in ⇧.

A solution for h⇧,Ki is a K-resilient plan for ⇧. Following, we
present a novel algorithm for Resilient Planning called RESPLAN
that computes resilient plans for classical planning problems by it-
eratively using a classical planner to prove whether a state is re-
silient or not. RESPLAN algorithm takes as input a resilient planning

problem hhF,A, s0, Gi,Ki, and outputs a K-resilient plan ⇡
K for

hF,A, s0, Gi if it exists and unsolvable otherwise. The recursive
nature of the definition of k-resilient state means that, in order to
achieve this, we will have to prove resilience of many other states.
That is, to prove that a state s is k-resilient, we need to find a succes-
sor state s

0 = s[a] that is also k-resilient, and we also need to show
that s is still (k� 1)-resilient without using action a. The RESPLAN
algorithm does this by performing a search over an augmented state
space of nodes of the form hs, k, V i where s is a state, 0  k  K,
and V ✓ A are faulty actions that cannot be used again. Implicitly,
a node hs, k, V i represents the problem of deciding whether s is a
k-resilient state in hF,A \ V, s0, Gi.

A GB

C

D

E

F

Figure 1. Navigation problem with seven locations (squares) and three
types of connections: road (solid), railway (dashed), and flight (dotted).

Now, we present a quick walk-through of what could be a possible
execution of RESPLAN. We consider as inputs the problem of Figure
1 and K = 2, so the Open list will be initialized with hA, 2, ;i.
Assume that, in the first iteration, ComputeP lan returns the
plan (car(A,B),train(B,F),train(F,G)) so, after push-
ing the generated nodes, hF, 1, {train(F,G)}i will occupy the
last position in Open. In the next iteration, RESPLAN will pop
hF, 1, {train(F,G)}i and it will find out that F is not 1-resilient,
since ComputeP lan will not be able to find a plan from F to G that
does not use train(F,G). It will then call UpdateNonResilient

and add hF, 1, {train(F,G)}i to R# alongside hF, 2, ;i. At this
point, the plan (car(A,B),train(B,F),train(F,G)) is not
2-resilient since F is not 2-resilient, and this will be reflected
in the algorithm by failing the RCheck after it pops hB, 2, ;i.
RESPLAN will then try to compute a plan to the goal starting
from B. Recall that hF, 2, ;i belongs to R# and, therefore, S# con-
tains F which will be in turn not visited by ComputeP lan. Let
us assume that the computed plan is (car(B,D),car(D,G))
It is worth noticing that, at this stage, the algorithm dis-
carded the suffix (train(B,F),train(F,G)) of the first
computed plan (car(A,B),train(B,F),train(F,G)), and
is now considering (car(A,B),car(B,D),car(D,G)). Next,
RESPLAN will pop hD, 1, {car(D,G)}i and compute a plan
from D to G without using car(D,G). One possibility is to
use train(D,G) instead, so, in the next iteration, it will
pop hD, 0, {car(D,G),train(D,G)}i. At this point it will
once again compute a plan from D to G, but this time with-
out using neither car(D,G) nor train(D,G), and the only
solution here will be (car(D,F),train(F,G)). Since we

are at k = 0, the nodes hD, 0, {car(D,G),train(D,G)}i
and hF, 0, {car(D,G),train(D,G)}i will be directly added
to R". In the next two iteration, RESPLAN will pop first
hD, 1, {car(D,G)}i and then hD, 2, ;}i, and both times the
RCheck will return True; so these nodes will be moved to R".
At this point, RESPLAN has proven that D is 2-resilient. The fol-
lowing iterations, all the way to the end of the algorithm, will fol-
low a pattern similar to the one described for D but for states B
and A. Once RESPLAN terminates, it will return the 2-resilient plan
(car(A,B),car(B,D),car(D,G)).

K=1 K=2 K=3 K=4
Domain Sol MN FS RP MN FS RP MN FS RP MN FS RP

Total-IPC S 10 2 56 2 1 12 0 0 0 0 0 0
(#106) U 8 - 7 9 - 9 10 - 8 15 - 9

Total-Res S 9 11 29 1 2 29 0 0 21 0 0 9
(#30) U 0 - 0 0 - 0 0 - 0 0 - 0
Total S 19 13 85 3 3 41 0 0 21 0 0 9

(#136) U 8 - 7 9 - 9 10 - 8 15 - 9

Table 1. Coverage results for RESPLAN (RP), compilation into FOND
using MyND (MN) or FOND-SAT (FS) across benchmarks from the IPCs

and the newly generated instances (Res)

In light of these results, we are currently studying ways to improve
the performance of RESPLAN. In particular, we are working on a
technique that exploits the landmarks [6] of the planning problem to
identify an upper bound of the resilience of a state that can be used
for early detection of unsolvable instances.

As future work, we plan to make our approach more flexible and
general through a number of extensions that consider richer planning
formalisms. In this regard, we believe that defining the notion of re-
silience with respect to time and resources could be of great interest.

4 Conclusion and Future Work
We addressed the challenge of creating plans within classical plan-
ning that maintain robustness during execution. These plans are re-
quired to pass through states that satisfy a specified resilience thresh-
old. The RESPLAN algorithm generates plans that are resilient, en-
suring they can be repaired if a limited number of planned actions
fail to execute or have no impact, leaving the planning model’s cur-
rent state unaffected. An experimental comparison with another ap-
proach, which relies on compilation into strong FOND planning,
shows that RESPLAN is competitive in coverage for unsolvable in-
stances, but is significantly more effective in terms of both coverage
and runtime on solvable instances. In future work, we aim to opti-
mize RESPLAN’s performance through various methods, particularly
by implementing new pruning techniques that could enhance its effi-
ciency on unsolvable instances, such as by leveraging landmarks [6].
Furthermore, we plan to explore alternative definitions of resilient
states and additional strategies to model and manage action failures.
Resilient planning may serve as a tool to assess the quality of such
models by evaluating the level of resilience they allow in their plans,
prioritizing models that offer greater resilience.

References
[1] Diego Aineto, Alessandro Gaudenzi, Alfonso Gerevini, Alberto Rovetta,

Enrico Scala, and Ivan Serina, ‘Action-failure resilient planning’, in
ECAI 2023, 44–51, IOS Press, (2023).

[2] Mohannad Babli, Óscar Sapena, and Eva Onaindia, ‘Plan commitment:
Replanning versus plan repair’, Engineering Applications of Artificial
Intelligence, 123, (2023).

[3] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina, ‘Plan stabil-
ity: Replanning versus plan repair’, in Proceedings of the Sixteenth In-
ternational Conference on Automated Planning and Scheduling (ICAPS-
2006), pp. 212–221. AAAI, (2006).

[4] Alfonso Gerevini and Ivan Serina, ‘Efficient plan adaptation through
replanning windows and heuristic goals’, Fundamenta Informaticae,
102(3-4), 287–323, (2010).

[5] Malik Ghallab, Dana S. Nau, and Paolo Traverso, Automated Planning
and Acting, Cambridge University Press, 2016.

[6] Jörg Hoffmann, Julie Porteous, and Laura Sebastia, ‘Ordered landmarks
in planning’, J. Artif. Intell. Res., 22, 215–278, (2004).

