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Abstract. Integrating Large Language Models (LLMs) with graph-
based retrieval-augmented generation (GraphRAG) in modular multi-
agent Al systems promises to automate complex data-analytic pro-
cesses. In highly regulated domains such as financial auditing, the
Al-assisted automation of routine tasks like question answering must
meet strict requirements for accuracy, explainability, and compliance,
i.e., inaccurate or intransparent Al outputs risk undermining trust and
cause severe financial and reputational consequences. We propose
AgentRAG, a hybrid multi-agent architecture that couples LLMs with
structured semantic knowledge to build a conversational analytical
chatbot that lets auditors interact with their data. A three-step process
involves retrieving data and generating an LLM response, verifying
the LLM’s answer against background knowledge, and explaining
the validation and retrieval process. Leveraging GraphRAG, the sys-
tem improves contextual grounding, traceability, and answer consis-
tency, enabling auditors to validate and interpret Al-driven insights
effectively. This approach enhanced trustworthiness and reliability
in auditing workflows, facilitating the responsible adoption of Al in
high-stakes environments.

1 Introduction and Research Questions

"Chatting with data" is an emerging paradigm in interactive data ana-
lytics, letting users pose natural-language questions to derive insights.
This interaction can be realized by a modular multi-agent system,
in which specialized agents collaborate to translate user queries into
formal representations, to compute analytic results and to generate
domain-specific, data-driven responses. A key challenge lies in the
verbalization of analytical outcomes, transforming data analytics re-
sults into data stories grounded in rich domain knowledge. LLMs are
attractive for this narrative role due to their context-aware generation
abilities. According to the EU Al Act, domains such as financial
auditing [7, 21] or healthcare [30, 22] are potentially categorized as
high risk. Consequently, LLMs face limitations: their likelihood to
hallucinate facts [12, 10] and the lack of transparency in their decision-
making processes undermine trust in their outputs. Therefore, LLMs
deployed in these domains must comply with strict reproducibility,
traceability, and explainability requirements, and also broader trust-
worthyness criteria such as robustness and privacy [33, 14]. Verbal-
izing data-analytic results or knowledge-base queries [28] must be
grounded in structured, semantically rich representations. AgentRAG
addresses this by combining LLMs with factual and domain knowl-
edge graphs (KGs) [1, 26] to ensure consistency, compliance, and
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thus correctness of the generated answers. The latter capture not only
factual information but also the underlying semantic structures, en-
abling agents to interpret entity relationships with greater contextual
awareness [18, 19, 17]. Within human-in-the-loop systems, explain-
ability is just as essential as consistency: the mulit-agent system [8]
must clearly show how it reached a conclusion, which data were in-
volved, and why a particular result is consistent, valid and thus can be
considered as correct. This leads to the following research question:

How can answers generated by a multi-agent system combin-
ing LLMs and knowledge graphs for auditing be transparently
traced, validated, and explained?

We decompose this into three sub-questions:

RQ1: How can the consistency of generated answers in a multi-agent
system be systematically verified against the underlying knowledge?

RQ2: How can an agent-based validation ensure that generated
answers are correct and comply with formal, domain-specific rules
and constraints?

RQ3: Which methods enable agents to explain answer generation and
validation results in a traceable, transparent, and auditable manner
that ensures reproducibility for users?

Before outlining our approach, we briefly review related work.

2 Background

Combining LLMs and KGs has become a prominent research direc-
tion for improving the factual reliability of generated answers and the
interpretability of the reasoning process [35, 22, 26]. A key motivation
behind this integration is the use of structured knowledge to reduce
hallucinations, enhance traceability, and provide context-aware rea-
soning. Recent work shows that graph-based retrieval (GraphRAG) [9]
can improve both the factual correctness and the comprehensibility
of LLM answers. Relevant subgraphs are integrated into the input
context in order to make reasoning processes semantically sound and
interpretable [16, 15]. Beyond retrieval, there is growing interest in
verifying whether generated answers comply with formal constraints
or domain-specific rules. Methods in this area combine LLMs with
validation agents and symbolic or rule-based reasoning methods to
enforce consistency with ontological structures or logical constraints
[5, 13, 26]. Furthermore, the validation of KGs can be made more
reliable and traceable by fusing LLMs with human feedback [27],
as well as by using interactive explanation methods that provide
counterexamples and support transparent reasoning [25]. Structured
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Figure 1: AgentRAG: Mulit-agent system combining LLMs with KGs for trustworthy auditing.

background knowledge improves explainability by grounding outputs
in verifiable facts and yielding interpretable reasoning chains when
KGs are injected into generation [3, 31]. Hybrid schemes that pair
explainable clustering with generative models mitigate interpretability
gaps in complex domains [2], and multi-level semantic annotation
frameworks clarify what is captured and validated [20], enhancing
auditability. Nevertheless, a unified architecture offering traceability,
validation and explainability remains an open challenge, as most KG-
augmented approaches enhance answer generation with KG-based
reasoning, yet lack systematic validation and consistency checks.

3 Proposed Conceptual Approach

We introduce AgentRAG, a multi-agent system built on GraphRAG,
combining retrieval, validation, and explanation agents to ensure veri-
fiable and compliant outputs for question answering (QA) in auditing.
Figure 1 illustrates the system’s architecture and the interactions be-
tween agents. The knowledge base consists of two interrelated graphs
that enable structured access to information:

e Factual Knowledge Graph: Stores instance-level data from source
systems in a retrieval graph maintaining auditable memory, where
each QA run appends its analytic fragment, preserving traceability
and cumulative knowledge.

e Domain Knowledge Graph: Captures domain knowledge-taxo-
nomies, semantic relations, and audit rules from audit standards
such as IDW [6] and ISA [11] to enable semantic interpretation,
regulatory reasoning, and compliance checks.

The multi-agent system can be conceptually divided into three phases:
the QA process, the subsequent validation and the explanation process.
The first phase is operationalized through the interaction of the User,
GraphRAG Agent, and LLM components. The user poses a question
@ in natural language, which is processed by the GraphRAG Agent
transforming it into a structured form Q for querying the underlying
knowledge graphs. The agent retrieves a relevant context subgraph
G and derives an analytic subgraph G 4, which it appends to the
factual KG. The LLM then verbalizes an answer A from query 0,
context G¢, and result G 4. Two specialised agents subsequently
carry out validation and explanation.

Validation Agent First, a backward-reasoning step checks semantic
consistency between the verbal answer A and the analytic subgraph
G 4. A hypothetical subgraph G4 is reconstructed from A and aligned
with G 4 using graph matching techniques, such as classical structural
algorithms [24] and attributed graph matching methods [32, 29]. The
resulting alignment map captures structural and semantic correspon-
dences and helps identify potential hallucinations or inconsistencies

introduced during verbalization. Second, rule-based validation con-
sults the domain KG to verify that inferred relations comply with
domain rules and standards [4], ensuring normative correctness and
auditability. Third, to establish procedural transparency and traceabil-
ity, comprehensive provenance tracking records data sources, agents,
and all transformations throughout the QA process for each response,
attaching this audit trail as metadata to the factual KG. Together these
mechanisms yield evidence-based reasoning [22] that extends beyond
traditional chain-of-thought methods [23].

Explanation Agent generates explanations using a KG that captures
key elements of the QA and validation processes, presenting retrieval
and reasoning steps transparently in a user-friendly format. To bal-
ance transparency and usability, the graph could be structured into
a three-level model that adapts the amount of detail to different user
needs [3]. The Core Level shows the natural language question @, con-
text subgraph G¢, and verbalized answer A, providing an overview
of the retrieval context. The Extended Level adds the structured query
@, analytic result subgraph G 4, and alignment mapping, enabling
deeper tracing of the Validation Agent’s backward reasoning. The
Audit Level offers a comprehensive rule-based validation report and
provenance tracking for expert users requiring full traceability. The
explanation graph supports both visual and textual rendering, clearly
conveying the system’s rationale and allowing users to explore each
derivation step interactively.

4 Conclusion and Next Steps

In summary, the proposed multi-agent architecture enables verifiable,
auditable and explainable QA for the auditing domain. By decompos-
ing the workflow into specialized, collaborating agents, the approach
achieves modularity, end-to-end transparency, and rigorous control
over answer generation. The knowledge base enables both efficient
retrieval of data-driven context and strict compliance checking against
domain-specific rules and auditing standards. The Validation Agent
anchors every answer in formal reasoning, regulatory requirements,
and provenance evidence, ensuring outputs that are plausible, repro-
ducible, and fully aligned with domain requirements. Complementing
this, the Explanation Agent provides user-centred, traceable narratives
that abstract complex internal reasoning, thereby deepening trust in
the system’s results. The next phase involves developing a GraphRAG
system as the foundational agent to establish the core of the multi-
agent framework. Subsequently, research will focus on identifying
and implementing methods that empower the Validation Agent to
robustly enforce consistency, rule compliance, and auditability. Like-
wise, coordination strategies among agents will be investigated to
further enhance the system’s robustness and operational efficiency.
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