
Explainable Multi-Objective Reinforcement Learning

Juan C. Rosero
,*

School of Computer and Statistics, Trinity College Dublin, Ireland

1 Introduction

Reinforcement Learning (RL) is a machine learning paradigm that
focuses on trial-and-error, where the agent interacts with the envi-
ronment and receives rewards and penalties for its actions [21]. It has
achieved significant breakthroughs across multiple domains such as
video games, vehicle guidance, system control, robotics, networking,
and healthcare [7]. However, real-world problems often require op-
timizing for multiple, potentially conflicting objectives, rather than
a single scalar reward, which has led to the development of Multi-
Objective Reinforcement Learning (MORL), where agents learn to
balance and reason over several competing goals simultaneously.
Recent work has demonstrated the potential of MORL for tackling
complex decision-making scenarios, including more traditional au-
tonomous systems [6] or even more specific applications like ex-
ploring and optimizing pandemic mitigation policies [19]. But, while
MORL is a more realistic and flexible modeling paradigm, it also in-
creases the complexity of both learning and decision-making.

On the other hand Explainable Reinforcement Learning (XRL)
has also emerged to address growing demands for transparency,
trust, and human-in-the-loop interaction in RL systems. XRL sur-
veys [17, 14] generally classify methods into inherently explain-
able approaches and post-hoc explanations, aiming to provide insight
into the decision-making of RL agents. However, most existing XRL
work focuses on single-objective RL and overlooks the added chal-
lenges of explaining decisions in multi-objective settings.

The intersection of these two fields remains largely underexplored.
Multi-objective scenarios intuitively introduce additional complex-
ity for decision making, as agents must balance trade-offs, adapt to
evolving priorities, and reason about interactions between competing
goals. Existing XRL methods do not provide insight into how such
trade-offs are managed or how decisions are influenced by evolving
preferences or by the balancing of objectives. That is the gap I aim
to explore and address in my research.

2 Explainable Multi-objective Reinforcement

Learning

To understand the research gaps presented by the intersection
of MORL and XRL, Explainable Multi-Objective Reinforcement
Learning (XMORL), we first briefly introduce both fields.
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2.1 Multi-Objective Reinforcement Learning

The common approaches to MORL can be classified in single-policy
methods, which produce one policy methods that attempts to balance
all objectives, and multi-policy methods, that try to generate a set of
policies that reflect different trade-offs or preferences. Single-policy
approaches, such as those using weighted sums or utility functions
[1, 15], are simple but often obscure the trade-offs involved. In con-
trast, multi-policy approaches like Deep W-Learning (DWN) [8] and
Pareto-Conditioned Networks (PCN) [19] provide more flexibility
while modeling the problems and behaviors, but add complexity to
understanding agent behavior and decision-making because of the
addition of a new layer to the decision-making process to select one
policy at each moment.

2.2 Explainable Reinforcement Learning

XRL methods are usually classified by either scope, in either global
or local explanations, or the timing of the explanation, in intrin-
sic or post-hoc explanations [17]. Local explanations focus on in-
dividual decisions, while global methods describe overall policy be-
havior. Intrinsic methods build interpretability into the agent itself,
while post-hoc approaches are applied after training. Examples of
local intrinsic methods include reward decomposition [11] and Hex-
RL [16]. Global intrinsic methods, such as SkillTree [23] and CSG
[22], aim to structure the agent’s policy in such a way that makes the
overall behavior easier to understand. Local post-hoc methods, like
counterfactual explanations [5] or DeepSHAP [24], explain specific
actions after they occur. Finally, global post-hoc methods, such as
policy summarization [2] and decision tree interpretations [12], pro-
duce interpretable overviews of learned policies without modifying
the agent.

3 Research Questions

The focus of my research is how to make decision-making in MORL
more transparent and interpretable. MORL enables decision making
in scenarios where single-objective rewards are not enough to effec-
tively model the desired behavior of an agent, but it also complicates
the decision process by introducing an additional layer of complex-
ity that makes agent behavior harder to explain to users. To address
this problem, I focus on the field of Explainable Multi-Objective Re-
inforcement Learning (XMORL). Based on this, I proposed the fol-
lowing research questions:

1. How can explanations be designed to accommodate objective-
specific reasoning and trade-offs in multiobjective settings? An
interesting approach is to combine per-objective reasoning with a
global visualization of explanation of the trade-offs involved.



2. How can XRL tools be improved to accommodate dynamic and
evolving preferences? Enhancing preference-conditioned MORL
methods like PCN [18] to be more easily explainable seems to be
a possible approach to address this.

3. Can explanation methods be made scalable to high-dimensional
objective spaces, where trade-offs become increasingly complex?
One possible approach to this problem could be to explore hierar-
chical or modular approaches.

4. How can user-in-the-loop XRL frameworks be adapted to sup-
port preference and trade-off refinement in MORL? To address
this problem it is required to develop frameworks that not only
help explain behavior of the agent, but also provide mechanisms
to understand and shape objective prioritization.

5. Can causal explanations be implemented in MORL so explana-
tions can explain the perceived trade-offs and the underlying rea-
soning behind them? The starting step would be to extend existing
causal XRL approaches [13] to work in a multi-objective setting.

6. Which benchmarks and evaluation mechanisms are required to
evaluate performance and quality on XMORL methods? Develop-
ing benchmarks and standardized quality metrics would be critical
to effectively compare and improve different approaches. While
existing XRL metrics provide a starting point, they may not di-
rectly translate to the multi-objective aspects of XMORL. For ex-
ample, commonly used metrics like coverage may require adapta-
tion, as it’s not clear if they would need to be assessed separately
for the state and objective space or not.

These questions aim to bridge the current gap between MORL and
XRL, supporting the development of trustworthy, explainable, and
adaptive MORL applications.

4 PhD Work Plan

Our research focuses on the intersection of MORL and XRL, we aim
to advance the field of XMORL. The following sections outline the
work completed so far and the planned future directions.

4.1 Work Completed

Our work so far has focused on understanding foundations of the
two underlying areas, MORL and XRL, and publishing a case-study
paper in each.

Multi-Objective Deep Reinforcement Learning for Au-

tonomous Systems: In my first publication [20], we applied Deep
W-Learning (DWN) [8], a MORL technique, to a real-world au-
tonomous system for the first time. Specifically, we integrated DWN
into an Emergent Web Server (EWS) [3] self-adaptive exemplar,
enabling runtime optimization of conflicting objectives such as re-
sponse time and configuration cost. The results demonstrated that
DWN can balance multiple objectives in complex environments,
while avoiding issues associated with combining objectives into a
single static utility function. This work highlighted both the potential
of MORL for practical systems and the need to understand and trust
learned policies.

Explaining Reinforcement Learning Decisions in Self-

Adaptive Systems: I also contributed to the implementation of
EARL (Explanations using Alternative Realities for Reinforcement
Learning), a Python library designed to generate counterfactual
explanations for RL-based self-adaptive systems. EARL enables
the exploration of "what-if" scenarios to clarify agent behavior and
decision-making in complex, realistic environments. The library

implements multiple counterfactual generation methods, Variants of
RACCER [4] and GANterfactual [9] and provides a model-agnostic
interface to facilitate integration with RL agents. To demonstrate
its applicability, we integrated EARL into Citi-bikes [10], a self-
adaptive bike-sharing system simulation, providing explanations for
agent decisions. This work has been submitted to a conference and
is currently under review.

4.2 Future Work

The primary focus of my future research will be the development
of explainability techniques specifically tailored for Multi-Objective
Reinforcement Learning (XMORL). Building on the observations
from our previous work, I will address research questions related to:
(I) Designing explanations that capture both objective-specific rea-
soning and the trade-offs made by the agent, (II) Identifying spe-
cific application domains for XMORL, such as user-in-the-loop sce-
narios or settings requiring causal understanding, where XMORL
techniques could be tested and would provide tangible benefits,
(III) Adapting explanation methods to dynamic or evolving user pref-
erences, (IV) Ensuring the scalability and effectiveness of explana-
tions in high-dimensional objective spaces, and (V) Defining bench-
marks for evaluating the quality of explanations in XMORL, that
account for the unique challenges of multi-objective settings.

As an initial step, I am working on completing a position paper
that formalizes the research gaps and challenges in XMORL where
we identify possible intersections of both areas. My current work fo-
cuses on formalizing the research gaps that must be filled to address
the problem of Explainable Multi-Objective Reinforcement Learn-
ing. My work aims to contribute towards the creation of trustworthy,
explainable, and adaptive reinforcement learning agents capable of
operating in complex, multi-objective real-world systems.

5 Conclusion

The intersection of Multi-Objective Reinforcement Learning and
Explainable Reinforcement Learning presents both significant chal-
lenges and opportunities for the development of trustworthy au-
tonomous systems. My work so far has explored this space by ap-
plying MORL techniques to real-world self-adaptive systems, con-
tributing to the development of explanation tools for RL, and identi-
fying open research areas in the emerging field of Explainable Multi-
Objective Reinforcement Learning.

The results of these efforts highlight the potential of MORL for
handling complex, multi-objective decision-making, and also ex-
press the potential limitations of existing explainability approaches
when applied to such settings. As a result, the need for dedicated
XMORL techniques that can make agent behavior more transparent,
interpretable, and user-aligned is clear.

For the next steps of my research, I will focus on addressing these
challenges by developing explanation methods tailored to MORL
scenarios. These methods will aim to provide both objective-specific
insights and an understanding of the trade-offs involved.
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