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Abstract. Federated learning (FL) enables collaborative model
training without data centralisation, yet most FL research targets
deep neural networks. Interpretable models remain under-explored.
This PhD investigates whether Bayesian networks (BNs), including
Bayesian classifiers, can be learned federatively while maintaining
three key properties: the privacy of local data, the tractability of the
global model, and competitive predictive accuracy.

1 Introduction
Federated learning (FL) [8] enables multiple clients to collabora-
tively train a global model without sharing raw data. This paradigm
aligns with modern privacy regulations, such as the General Data
Protection Regulation (GDPR) [4], and mitigates practical barriers
to data centralization. However, most FL research targets deep neu-
ral networks [20], offering little support for interpretability or proba-
bilistic reasoning.

Bayesian networks (BNs) [6, 7] are probabilistic graphical models
that encode conditional independencies via directed acyclic graphs.
They offer explainability, uncertainty quantification, and robustness
to missing data. These properties make them especially suitable for
high-stakes decisions, aligning with the transparency and auditabil-
ity requirements established by the European AI Act [3]. However,
adapting BNs to the federated setting poses three key challenges:

Q1 Structure learning without data sharing. How can clients in-
dependently learn BN structures and merge them into a global
model without exchanging raw data?

Q2 Tractability and structural fidelity. How can fusion opera-
tors on the server preserve relevant dependencies and maintain
bounded model complexity without access to the data?

Q3 Formal privacy guarantees. How can privacy be enforced dur-
ing communication, whether of parameters or graphs, using
mechanisms such as differential privacy [2] if necessary?

This PhD aims to extend the FL paradigm to probabilistic graph-
ical models by developing algorithms for (i) distributed structure
learning of BNs, (ii) federated classification with Bayesian models,
and (iii) structure fusion under tractability and privacy constraints.
The project addresses both fixed-structure classifiers, such as Naive
Bayes [5] and Average n-Dependence Estimators (AnDE) [19];
fixed-structure classifiers, such as k-Dependence Bayesian (kDB)
[10] and Tree Augmented Naive Bayes (TAN) [5]; and full BN learn-
ing via Greedy Equivalence Search (GES) [1]. In addition, it pro-
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poses novel structural fusion methods that aggregate graphs from dif-
ferent clients, limiting the unconstrained fusion [9] or creating con-
sensus models that preserve key independencies.

The core hypothesis is that transparent, tractable, and privacy-
preserving Bayesian models can be learned in a federated way with-
out sacrificing predictive accuracy. Results to date support this claim,
showing that federated BNs can match centralised baselines while
satisfying formal privacy and scalability constraints.

2 Work completed so far

The thesis has produced contributions in three areas: structure fu-
sion, federated structure learning, and federated Bayesian classifiers.
These contributions have been published or accepted in international
venues and are supported by open-source implementations.

Figure 1. Diagram of FedGES [15], showing also the necessary
component of structural fusion of Bayesian networks.

2.1 Tractable fusion of Bayesian network structures

We developed fusion strategies for aggregating heterogeneous
Bayesian network (BN) structures while controlling model complex-
ity. These contributions fall into three categories:

• Fusion with direct treewidth constraint. Genetic algorithms that
optimise structural similarity while limiting the maximum struc-
tural complexity on the fused graph [13, 14].

• Pre-fusion pruning. A second family of genetic algorithms per-
forms edge pruning before fusion finding for a consensus model
after fusing the pruned BNs [16, 17].



Figure 2. Diagram of federating Bayesian classifiers, specifically with variable structure, with the 2-step optimization.

• Greedy consensus via minimum-cut. A graph-based heuris-
tic that integrates minimum-cut analysis into Backward Equiva-
lence Search (BES) to select consensus structures without explicit
thresholds [18].

These operators are compatible with both standalone fusion and
iterative federated learning protocols, serving as core components in
the construction of the global model.

2.2 Federated learning of BN structures

We proposed FedGES [15] (Figure 2), a protocol where clients learn
BN structures using Greedy Equivalence Search (GES) and transmit
only graphs to a central server. Multiple fusion operators can be em-
ployed at each round to construct a global structure, which is then
utilized to guide the subsequent local search. An extended version of
the method has been submitted to a journal.

2.3 Federated Bayesian classifiers

We adapted Naive Bayes and Average n-Dependence Estimators
(AnDE) to the federated setting (Figure 2, right). In particular:

• FedAnDE, a framework for both generative and discriminative
aggregation of AnDE classifiers (including Naive Bayes with
n = 0) with support for differential privacy, has been submitted
to a workshop and a journal.

• A discriminative version of federated Naive Bayes was previously
published in [12].

• An earlier structural simplification of AnDE for high-dimensional
data was presented in [11].

2.4 Software and reproducibility

All methods are released in the open-source library BayesFL library1

(Java, MIT licence). This tool provides functionalities for federated
structure learning of Bayesian networks and Bayesian classification,
including multiple fusion and consensus algorithms. It features a
modular architecture, designed to accommodate new algorithms and
to support large-scale experimentation.

Regarding the datasets used in the experimental evaluation, we
have published on OpenML2 both the classification datasets not pre-
1 https://github.com/ptorrijos99/BayesFL
2 https://www.openml.org/search?type=data&uploader_id=33148

viously available in that repository, and the synthetic datasets gen-
erated from Bayesian networks in the bnlearn repository3, sampled
with 5000 instances per network. The latter are also available on
Zenodo4, with a total of 627 downloads.

3 Future work
The final phase of the thesis focuses on methodological extensions,
integrating current components, and preparing journal versions. The
main lines of work are:

F1 Extension to variable-structure classifiers. The fusion and
consensus operators developed for structure-only models will be
used as a preprocessing step to derive a common graph in sce-
narios with heterogeneous local structures (Figure 2). This will
enable federated training of classifiers such as Tree-Augmented
Naive Bayes (TAN) [5] and k-Dependence Bayesian (KDB) [10].

F2 Journal extensions of published methods. Three journal sub-
missions are planned: (i) one combining the two families of
genetic fusion methods (direct constraint and pre-fusion prun-
ing); (ii) one focused on the greedy min-cut fusion method, in-
cluding new greedy algorithm and expanded analysis; and (iii)
an extended version of the MiniAnDE classifier, including its
integration into the federated setting and evaluation on high-
dimensional bioinformatics data. All submissions will include
broader experiments and ablation studies.

F3 Exploration of alternative local learners. Although FedGES
already provides convergence guarantees, the framework allows
for other base structure learners. Future work includes testing
alternative algorithms in the local step and analysing their impact
on global model quality.

F4 Application to real-world data. The FedGES protocol, fusion
methods, and federated Bayesian classifiers can be validated on
large-scale, real-world healthcare datasets. The goal is to eval-
uate scalability and clinical interpretability in a realistic dis-
tributed scenario.

F5 Thesis finalisation. The dissertation will compile all published
and submitted work and is expected to be completed and de-
fended by December 2026, at the end of the four-year doctoral
contract FPU21/01074 funded by the Spanish Ministry of Sci-
ence, Innovation and Universities.

3 https://www.bnlearn.com/bnrepository
4 https://doi.org/10.5281/zenodo.14917795
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