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Abstract. Deep learning in digital pathology relies on high-quality
annotations, which are expensive to produce. We propose an au-
tomated pipeline that uses multiplex immunofluorescence (mIF) to
generate ground truth annotations for peritubular capillaries (PTCs)
in periodic acid–Schiff (PAS) stained kidney biopsies. Image regis-
tration between mIF and PAS, combined with thresholding endothe-
lial cell markers and a deep learning-based structural segmentation,
yields robust PTC annotations, optionally refined via the Segment
Anything Model (SAM). Since mIF processing alters PAS appear-
ance, we propose the employment of a cycle-consistent GAN to align
the post-mIF and normal PAS stains, ensuring consistent segmenta-
tion performance across stains. This scalable annotation strategy will
lay the groundwork for advanced morphological analyses tied to clin-
ical outcomes.

1 Introduction

In recent years, artificial intelligence has become increasingly im-
portant in digital pathology. Deep learning models have been applied
for automating diagnosis as well as predicting patient outcome and
deriving new morphological biomarkers [18].

One particularly promising application is pathomics [5, 10]. While
end-to-end outcome or diagnosis prediction models are essentially
black boxes and do not give a direct explanation, pathomics quan-
titatively assesses patient tissue. First, the WSI (whole-slide image)
of the tissue scan is segmented utilizing a deep learning model. Sub-
sequently, quantitative features are extracted from the instances in
the segmentation masks such as diameter or distance to closest in-
stance. This yields a large dataframe containing information about
all segmented instances which can be statistically related to clinical
outcomes.

However, training robust deep learning segmentation models
remains challenging, as they require high-quality pixel-level an-
notations. Manual annotation of vast numbers of WSIs is time-
consuming, prone to inter-observer variability, and requires expert
knowledge.

A solution for generating ground truth annotations for routine tis-
sue scans is utilizing registered immunofluorescence or immuno-
histochemistry images for automatically generating a segmentation
mask [20, 13]. In our project, we employ multiplex immunofluo-
rescence (mIF) to automatically generate ground truth annotations
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for periodic acid Schiff (PAS) stained WSIs of the same kidney tis-
sue. PAS staining was chosen because it is a common procedure in
nephropathology. The use of mIF permits the incorporation of differ-
ent tissue markers for the differentiation of the renal microanatomic
structure and immune cells. This enables the creation of an exten-
sive ground truth annotation dataset for a variety of classes. We ini-
tially focused on annotating peritubular capillaries (PTCs) which are
small blood vessels. Primarily because our dataset originates from
transplant cases, where PTCs are important for transplant rejection
classification according to the Banff criteria [16, 1]. In the future, we
will extend these annotations to include additional classes, such as
immune cell nuclei.

2 Method
2.1 Data

Our dataset consists of 42 mIF and PAS image pairs, each showing
a slice from a kidney transplant biopsy. The cases include a range of
diagnoses: normal (n=10), T-cell-mediated rejection (TCMR) (n=8),
antibody-mediated rejection (ABMR) (n=9), TCMR and ABMR
(n=6) and polyomavirus nephropathy (n=9).

The mIF images incorporate 24 markers that enable detailed differ-
entiation of immune cells and renal microanatomic structures. These
images were acquired using the Lunaphore COMET system at a res-
olution of 0.28 µm per pixel. Subsequently, the same tissue was
stained with PAS and scanned at a resolution of 0.2521 µm per pixel
using the Aperio AT2 whole-slide scanner by Leica Biosystems.

2.2 Annotation Generation

To generate the annotations, we began by performing background
subtraction on all mIF scans with the Horizon image viewer to re-
move autofluorescence. Furthermore, the Warpy workflow [8] was
utilized to register the corresponding PAS and mIF images.

PTC annotations were generated from three mIF channels: PLVAP,
CD31 and DAPI. Both PLVAP and CD31 target endothelial cells,
while DAPI stains cell nuclei. Given that endothelial cells line all
blood vessels as well as the lymphatic system [9], these markers are
well-suited for identifying PTCs. First, Otsu thresholding [15] was
applied separately to the PLVAP and CD31 channels to produce ini-
tial masks of positively stained cells, which were then combined.
Holes in the mask were filled, and partially captured nuclei were fully
included. For this adjustment, nuclei were initially segmented from



the DAPI channel using the StarDist extension in QuPath [17, 3].
After these corrections, any remaining holes in the annotations were
closed.

To refine the PTC annotations further, instances that were clearly
not PTCs were filtered out. A hand-annotated tissue mask was used to
exclude areas outside of the tissue. Additionally, a structural segmen-
tation mask generated using the FLASH deep learning model from
[10] was employed to filter the annotations. The mask segments dif-
ferent structures in the kidney: glomeruli, tubuli, arteries, and veins.
This step is necessary, as arteries are also lined by endothelial cells as
well as the capillaries inside of glomeruli. Finally, all instances that
are smaller than a threshold of 510 pixels were removed. The thresh-
old was determined by a medical student through visual inspection.

We also tested the Segment Anything Model (SAM) [14] for anno-
tation refinement and plan to assess the performance of MicroSAM
[2], optimized for microscopy data. In future work, the annotation
creation workflow will be extended to include additional classes such
as nuclei from various cell types, which can be distinguished by their
marker intensities with the support of the existing FLASH segmen-
tation mask.

2.3 Segmentation Pipeline

For the training of a segmentation model, the PAS WSI will be di-
vided into patches, as gigapixel size prevents direct processing. We
will benchmark various segmentation network architectures such as
nnUNet [12], UNI [6] and CellViT++ [11] for nuclei segmentation
to determine the most suitable approach. To ensure reliable bench-
marking, the automatically generated annotations will be primarily
reviewed by a medical student, with selective validation by a su-
pervising pathologist to minimize variability while keeping human
intervention limited.

The initial segmentation model will be trained and evaluated on
our relatively small dataset of 42 whole-slide images. As a next step,
we plan to assess the segmentation performance on a larger cohort,
with the expectation that the model’s capabilities will transfer. How-
ever, we have observed that PAS WSIs stained after applying the
mIF workflow appear different from those where PAS staining was
directly applied using the same protocol. A similar issue was noted
by Wiedenmann et al. [20] for Hematoxylin and Eosin staining. In
their work, a cycle GAN was used for stain transfer from the normal
stain to the post-mIF H&E stain, which improved the segmentation
quality of a model trained on post-mIF H&E WSIs when applied to
normal H&E WSIs. Based on this observation, we also plan to ex-
plore synthetic image generation methods to improve transferability
between the two stain modalities: normal PAS and post-mIF PAS.

2.4 Morphological Features: Engineering & Analysis

It has been shown that structural segmentation masks can be used to
extract meaningful and interpretable morphological features, such as
the diameter or the distance to the closest instance, which in turn can
be correlated with clinical outcomes [10, 7]. With the guidance of
a pathologist, we will engineer such features from the segmentation
outputs. The segmentation model and subsequent feature extraction
pipeline will be applied to a large patient cohort. Finally, statisti-
cal analyses will be conducted to discover the relationships between
these extracted features and clinical outcomes.

Figure 1. Example output from the automatic annotation pipeline.
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Figure 2. Example of the SAM improvement.

normal PAS (original) normal PAS (translated) post-mIF PAS (original) post-mIF PAS (translated)

Figure 3. Stain translation for one patient’s normal and post-mIF PAS
patch.

3 Results
The pipeline for generating the PTC annotations has been imple-
mented in Python and applied to 15 of the 42 image pairs. In these
cases, a medical student has already corrected the FLASH structural
segmentation mask. Figure 1 shows an example annotation. The an-
notations appear promising, though with room for improvement.

To enhance the results, we experimented with the QuPath exten-
sion for SAM [19] to refine the generated annotations. An example
of these refined annotations is presented in Figure 2. Currently, we
are exploring the integration of SAM or Micro-SAM directly into the
Python pipeline for annotation creation.

In parallel, we trained a cycle-consistent generative adversarial
network (CycleGAN) for stain translation between post-mIF and nor-
mal PAS, using the code from Bouteldja et al. [4]. The goal was to
improve the segmentation quality of the FLASH model on the post-
mIF PAS WSI. Figure 3 illustrates two translated patches, highlight-
ing the potential benefits of this approach. The model was initially
trained during the data acquisition phase when only a subset of the
dataset was available. We will soon retrain the model using the com-
plete dataset.

4 Outlook
As a next step, we will implement a pipeline for training and
evaluating the segmentation model on PAS stained kidney biopsies
using the automatically generated annotations. Over time, additional
annotations will be assembled and the pipeline extended to other
classes. Although this work primarily targets peritubular capillaries,
the modular design also enables application to other renal structures,
such as glomerular capillaries. Once the annotations have been
reviewed, we will benchmark various segmentation models and
select the best-performing one to apply to a comprehensive multi-site
transplant cohort of more than 6000 cases, potentially incorporating
a generative model to enhance transferability. Since no public paired
PAS–mIF kidney datasets are available, generality of the annotation
pipeline will be assessed within this large cohort. Finally, we will
extract pathomics features and analyze their association with clinical
parameters. While the pipeline builds on established methods, its
integration into a scalable framework tailored to nephropathology
represents a novel contribution with high clinical relevance.
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