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Abstract. Graph Neural Networks (GNNs) have become essential
for processing graph-structured data, but their application in sensitive
domains is often limited by a lack of interpretability and challenges
with large-scale graphs. This abstract summarizes research address-
ing these challenges, focusing on the performance-complexity trade-
off in GNNs, and introduces novel approaches for dealing with this
trade-off. We also present a study on the effect of graph properties on
model performance and outline future research directions in explain-
able Al and hyperparameter optimization. Our work aims to make
GNNs more usable in real-world applications by providing methods
to manage their computational cost and increase their transparency.

1 Introduction

Graphs are a powerful and flexible way to model complex systems,
from social networks to molecular structures [1)|2}|7]. The rise of
Graph Neural Networks (GNNs) [5] has provided a powerful tool
for learning from such structured data. GNNs are capable of captur-
ing both the features of individual nodes and the overall topology of
the graph, which has led to state-of-the-art performance in a wide
range of tasks, including node classification, link prediction, and
graph classification. However, the very flexibility that makes GNNs
so powerful also contributes to one of their biggest drawbacks: their
“black-box” nature. The complexity of GNN models makes it dif-
ficult to understand how they arrive at their predictions. This lack
of transparency is a major obstacle to their adoption in high-stakes
environments, such as medical diagnosis or cybersecurity, where un-
derstanding the reasoning behind a decision is critical.

Furthermore, applying GNNSs to very large graphs presents a sig-
nificant computational challenge. As the size of the graph increases,
the memory and processing power required to train a GNN can be-
come prohibitive. This has led to an inherent trade-off between the
performance of a GNN and its computational complexity. This re-
search explores this trade-off in detail and proposes methods to find
an optimal balance, enabling the use of GNNs in large-scale applica-
tions where resources are a constraint.

Our contributions to the field of graph machine learning focus on
three main areas:

1. Novel methods for balancing the performance-complexity trade-
off in large graphs, allowing for scalable GNN deployment.

2. A scalable and efficient algorithm for signal propagation in hyper-
graphs.
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3. A meta-model approach for understanding the impact of graph
properties on GNN performance, which can guide hyperparameter
tuning.

Our work is motivated by the need for more practically usable and
trustworthy GNNs that can be deployed in real-world scenarios. By
addressing the challenges of scalability and interpretability, we hope
to unlock the full potential of GNNs for a wider range of applica-
tions.

2  Current Progress of Our Research

Our research has produced several key contributions to the field of
graph machine learning, which we detail in the following sections.

2.1 The Performance-Complexity Trade-off

We formalize the performance-complexity trade-off problem for
GNNss [8]. This framework allows us to systematically evaluate and
compare different GNN models on large graph datasets. The core
idea is to create a sequence of coarsened graphs, Go,G1,...,GL
with the purpose of selecting a graph that meets specific performance
or complexity requirements.

2.2 A HARP-based Method for
Performance-Complexity Balancing

Building on the HARP algorithm [3], which is a popular method
for learning node representations, we developed a method that uses
graph coarsening to balance performance and complexity [4]. Our
approach modifies HARP and extends it with an “adaptive prolonga-
tion” algorithm that refines the embeddings from a coarsened graph
back to the original graph structure. This allows us to leverage the
computational efficiency of working with a smaller graph while still
retaining much of the performance of the full model. This method
was tested on 10 common graph datasets and showed that at 60%
complexity, the models have a 99% probability of being within 10
percentage points of the performance on the full graph. This demon-
strates the effectiveness of our approach in achieving a favorable bal-
ance between performance and complexity.

2.3 A Direct Approach to Graph Coarsening

As an alternative to the HARP-based method, we proposed a more
direct approach to graph coarsening using edge contraction [8]. This
method is conceptually simpler and offers higher resolution in the



trade-off curve, as each step in the sequence corresponds to a small
change in the graph structure. However, our experiments show that
its performance is not as consistent as the HARP-based approach.

2.4 A Scalable Algorithm for Signal Propagation in
Hypergraphs

We developed a simple and scalable algorithm for signal propagation
in hypergraphs called CSP [10]. Hypergraphs, where an edge can
connect any number of nodes, are becoming increasingly common
for modeling complex relationships in domains such as network se-
curity and bioinformatics. Our algorithm is parameter-free and easy
to implement, making it a competitive baseline against more com-
plex, state-of-the-art algorithms. In our experiments, CSP was shown
to be several orders of magnitude faster than existing methods, mak-
ing it suitable for large-scale hypergraph analysis where computa-
tional efficiency is a primary concern.

2.5 The Effect of Graph Properties on Downstream
Task Performance

To better understand the relationship between graph structure and
GNN performance, we conducted a large-scale study on how graph
properties affect the performance of GNNs on downstream tasks [9].
We created a meta-dataset of over 15,000 combinations of graph
properties, hyper-parameter values, and GNN performance metrics.
Using this dataset, we trained a random forest meta-model to predict
GNN performance based on graph properties and hyperparameters.

3 Ongoing Research

Building on the work presented in Section a study of the in-
terplay between graph properties, model hyperparameters and GNN
performance was also conducted. We constructed a meta-dataset of
15 012 different combinations of graph properties, hyper-parameter
values and associated GNN performance metrics. This meta-dataset
was subsequently used to train a meta-model predicting GNN perfor-
mance from the graph properties and hyper-parameter values. As the
meta-model, we used a random forest regression model — the choice
of a simple model was sufficient to achieve good predictive power
and at the same time evaluating the meta-model is so computation-
ally cheap when compared to the GNN that it is possible to carry out
a total exploration of the hyper-parameter configuration space using
the meta-model.

Figure|I| shows an example of the results of this experimental
setup. We compared our approach to reference random search strat-
egy for hyperparameter optimization. The proposed meta-model-
based approach was used in two different fashions. In the first ap-
proach, the meta-model was trained only on GNN runs for the cur-
rently evaluated dataset. This approach (red line in the plot) ap-
proached the performance optimum faster or roughly as quickly as
random search. Secondly, the cross-dataset approach used a meta-
model that was pre-trained on GNN runs on other datasets, excluding
the currently evaluated dataset. This approach (violet line in the plot)
reached near-optimal performance without needing even one run of
the GNN on the evaluated dataset.

The results of the cross-dataset hyperparameter optimization strat-
egy are extraordinary in that they point to a possible “zero-shot” opti-
mization strategy from GNNs —i.e. a strategy that produces competi-
tive hyperparameter configurations for a given graph dataset without
needing to run the GNN even once. These results, however, need

further verification and development. We aim to further develop this
method in the following ways:

1. Conduct a full experimental verification — the results from [9] are
preliminary in that the selction of graph properties was not con-
ducted thorougly and the random search method in not the state-
of-the-art in hyper-parameter optimisation.

2. Pre-train on synthetic graphs — currently, the modified version of
the method is pretrained on standard graphs, making it unusable
for them. If the method were pretrained on synthetic graphs with
similar performance, this would be a marginally stronger result.

3. Apply the method accross different GNN architectures — currently,
the method was only tried with GraphSAGE.

4. Use the meta-model as a surrogate model for Bayesian hyper-
parameter optimisation methods.

5. Invert the meta-model — The current design of the meta-model is a
function predicting model performance from graph properties and
hyper-parameters. However, the true aim is to predict the hyper-
parameters from the graph properties. Choosing a different meta-
model architecture could allow for such a model

ArXiv - log loss

0.100
===« Optimal configuration
0.095 —— Random search
—— Our method
., 0-090 —— Our method with
38 pretraining
80.085
0.080
0.075
0.070 L Ty
10° 10' 10° 10°
Sampled configurations
Figure 1. Comparison of reference random hyper-parameter search with

our proposed solutions on the ArXiv dataset [6]]. The plot shows the perfor-
mance of each hyper-parameter optimisation method (measured by the log
loss of the model) as a function of the number of hyper-parameter configura-
tions sampled by the method.

4 Conclusion

This research addresses several challenges in the application of
Graph Neural Networks, focusing on their scalability and us-
ability. We have introduced effective methods for managing the
performance-complexity trade-off in large graphs, developed a
highly scalable algorithm for signal propagation in hypergraphs, and
created a meta-model to predict GNN performance based on graph
properties. Our ongoing work aims to develop explainable GNNs and
advance a "zero-shot" hyperparameter optimization strategy. Collec-
tively, these contributions work towards making GNNs more trans-
parent, efficient, and reliable for deployment in sensitive, real-world
applications.
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